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a b s t r a c t 

The gravity-driven motion of rigid particles in a viscous fluid is relevant in many natural and industrial 

processes, yet this has mainly been investigated for spherical particles. We therefore consider the sedi- 

mentation of non-spherical (spheroidal) isolated and particle pairs in a viscous fluid via numerical sim- 

ulations using the Immersed Boundary Method. The simulations performed here show that the critical 

Galileo number for the onset of secondary motions decreases as the spheroid aspect ratio departs from 

1. Above this critical threshold, oblate particles perform a zigzagging motion whereas prolate particles 

rotate around the vertical axis while having their broad side facing the falling direction. Instabilities of 

the vortices in the wake follow when farther increasing the Galileo number. We also study the drafting- 

kissing-tumbling associated with the settling of particle pairs. We find that the interaction time increases 

significantly for non-spherical particles and, more interestingly, spheroidal particles are attracted from 

larger lateral displacements. This has important implications for the estimation of collision kernels and 

can result in increasing clustering in suspensions of sedimenting spheroids. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The presence of solid rigid particles in a fluid alters the global

transport and rheological properties of the mixture in complex and

sometimes unpredictable ways. In recent years many effort s have

therefore been devoted to develop numerical tools able to fully re-

solve the fluid-particle and particle-particle interactions and to al-

low us to investigate rigid particles immersed in an incompressible

viscous fluid, see among others ( Lashgari et al., 2014; 2016; Loisel

et al., 2013; Picano et al., 2015; Yeo et al., 2010; Yin and Koch,

2007 ). Most of these previous studies consider spherical particles

and indeed simulations of suspensions of non-spherical particles

are relatively few despite the fact that these are more frequently

found. Here we develop a numerical algorithm for spheroidal par-

ticles and use it to investigate the sedimentation of isolated and

pairs of non-spherical particles. A spheroid, is an ellipsoid with

two equal semi-diameters, existing in two shapes of prolate and

oblate. For a prolate spheroid the symmetric axis is aligned with

the major semi-diameter while for an oblate spheroid this axis is

aligned with the minor semi-diameter of the spheroid. 
∗ Corresponding author. 
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.1. Sedimentation of isolated spheroids 

The gravity-driven motion of heavy particles in a viscous fluid

as been a matter of interest among physicists and engineers for

ecades; it is, however, only recently that the progress in develop-

ent of computational and experimental techniques has led to a

etter understanding of the physics behind it. 

The simple case of an isolated sphere, fixed in an uniform un-

ounded flow, has been considered first (see e.g. Bouchet et al.,

0 06; Ghidersa and Dušek, 20 0 0; Johnson and Patel, 1999; Schou-

eiler and Provansal, 2002 ). These studies showed different wake

tructures in different Reynolds number regimes. Allowing the par-

icle to move freely under the effect of gravity introduces new de-

rees of freedom as path instability can also occur ( Jenny et al.,

004; Uhlmann and Dušek, 2014 ). Indeed, these authors reported

rst the appearance of an oblique wake and then vortex shedding

nd unsteady motions when increasing the settling speed. 

Path and wake instability becomes more complicated in the

ase of a non-spherical particle as the orientation plays a role

n the dynamics of the problem. Feng et al. (1994) performed

wo-dimensional numerical simulations of settling elliptic particles

nd revealed that, in stable conditions, an elliptic particle always

alls with its long axis perpendicular to the gravity direction.

or three-dimensional oblate particles, the symmetry axis is also

ligned with the falling direction in the steady motion at low

ettling speeds. Increasing the particle size or density, the system

ecomes unstable and disc-like particles are observed to oscillate

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.08.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2016.08.005&domain=pdf
mailto:mehd@mech.kth.se
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orizontally. The ensuing wake instability depends on the aspect

atio and the vortices in the wake are modified as soon as the

article symmetry axis has an angle with respect to the velocity

irection, see the review in Ern et al. (2012) . The numerical

imulations of Mougin and Magnaudet (2001) and Magnaudet

nd Mougin (2007) , considering freely rising and fixed bubbles,

evealed that the path instability is closely related to the wake

nstability. These authors reported a planar zigzagging motion,

ollowing a rectilinear path for a frozen oblate bubble with aspect

atio of AR = 1 / 2 . 5 (polar over equatorial radius), in agreement

ith the experimental observations of Ellingsen and Risso (2001) .

hrust (2012) performed a full parametric study on disc-shaped

ylinders and oblate particles with different aspect and density

atios, revealing different states of motion in free fall (or rise). 

Unlike the case of sedimenting discs and oblate particles, lit-

le is known about prolate particles with finite aspect ratios. This

tudy aims therefore to fill this gap by investigating the sedimen-

ation of isolated prolate and oblate particles in a viscous fluid and

omparing the onset and characteristics of the unsteady motion as

unction of the Galileo number. (The latter quantifies the impor-

ance of buoyancy with respect to viscous forces). We find that

blate and prolate particles exhibit different secondary transversal

otions with different vortical structures in the unsteady wake.

he influence of the aspect ratio on the onset of these unsteady

econdary motions is also discussed. 

.2. Pair interaction between settling spheroids 

Joseph et al. (1987) and Fortes et al. (1987) report a peculiar

article pair interaction for two equal spherical particles. This is

he so-called drafting-kissing-tumbling (DKT) phenomenon: it is

ssociated with wake effects and torques acting on two settling

articles when sufficiently close ( Feng et al., 1994 ). The trailing

article is attracted into the wake of the leading particle, form-

ng a tall body which is unstable and turns. As a consequence,

he trailing particle tumbles and falls ahead of that initially lead-

ng ( Prosperetti and Tryggvason, 2007 ), see the visualization in

ig. 16 . This peculiar interaction has been studied by many both

xperimentally ( Feng et al., 1994; Fortes et al., 1987 ) and numeri-

ally ( Breugem, 2012; Glowinski et al., 2001; Patankar et al., 20 0 0 ).

ornari et al. (2016b ) performed direct numerical simulations of

 suspension of slightly-buoyant spherical particles in a quiescent

nd turbulent environment. They show that the DKT phenomenon

nduces a highly intermittent particle velocity distribution which

ounteracts the reduction of the mean settling velocity caused by

he hindering effect in a quiescent flow. Brosse and Ern (2011) in-

estigated the interaction of two identical disks falling in tandem

n a fluid at rest, at different Reynolds numbers, experimentally.

hey observed that for thinner disks AR < 1 / 6 the bodies continue

he fall together after attaching onto each other. 

Pair interactions between settling spheroidal particles has not

een studied before, although this is key to understand the col-

ective dynamics of sedimenting non-spherical particles. We there-

ore examine the DKT of spheroidal particles in the second part of

his work. Results of this study reveals that non-spherical particles

re attracted towards each other from larger horizontal separations

nd experience a significant increase in the duration of the kissing

hase. 

.3. Immersed boundary method (IBM) for non-spherical particles 

Among the different approaches proposed to perform interface-

esolved direct numerical simulations (DNS) of particle-laden

ows, such as force coupling ( Lomholt and Maxey, 2003 ), front

racking ( Unverdi and Tryggvason, 1992 ), Physalis ( Sierakowski and
rosperetti, 2016; Zhang and Prosperetti, 2005 ) and different al-

orithms based on the lattice Boltzmann method for the fluid

hase ( Ladd, 1994a, 1994b ), we resort to the Immersed boundary

ethod(IBM), which has gained popularity in recent years due to

he possibility of using efficient computational methods for solv-

ng the Navier-Stokes equations on a Cartesian grid. The IBM was

rst developed by Peskin (1972) and numerous modifications and

mprovement have been suggested since then, see Mittal and Iac-

arino (2005) . Uhlmann (2005) developed a computationally effi-

ient IBM to fully resolve particle-laden flows. Breugem (2012) im-

roved this method by applying a multi-direct forcing scheme

 Luo et al., 2007 ) to better approximate the no-slip/no-penetration

ns/np) boundary condition on the surface of the particles and by

ntroducing a slight retraction of the grid points on the surface to-

ards the interior. The numerical stability of the code for mass

ensity ratios (particle over fluid density ratio) near unity is also

mproved by a direct account of the inertia of the fluid contained

ithin the particles ( Kempe and Fröhlich, 2012 ). In this study the

BM method of Breugem (2012) is extended to ellipsoidal particles.

 lubrication correction force based on the asymptotic solution of

effrey (1982) is introduced when the gap width between the par-

icles is less than a grid cell and the collision and friction model

roposed by Costa et al. (2015) employed to calculate the normal

nd tangential collision forces. To this end, we approximate the in-

eracting objects by two spheres with same mass and radius cor-

esponding to the local curvature at the point of contact. 

This paper is organised as follows. We discuss the governing

quations and the details of the numerical method in Section 2 ,

ollowed by a validation study in Section 3 . The results of the sim-

lations are discussed in Section 4 , first considering isolated parti-

les and then pair interactions. Main conclusions and final remarks

re presented in Section 5 . 

. Governing equations and numerical method 

.1. Governing equations 

The motion of rigid ellipsoidal particles is described by the

ewton–Euler equations 

p V p 
d U p 

d t 
= F p , (1a) 

d ( I p ω 

ω ω p ) 

d t 
= T p , (1b) 

here ρp , V p and I p are the mass density, volume and moment-

f-inertia tensor of a particle. U p and ω 

ω ω p are the translational and

he angular velocity of the particle. The moment of Inertia I p of a

on-spherical particle changes with the particle orientation and is

herefore kept in the time derivative. F p and T p are the net force

nd momentum resulting from hydrodynamic stresses on the par-

icle surface, gravity and particle-particle interactions. These can be

ritten as 

 p = 

∮ 
∂V p 

[
−p I + μ f 

(∇ u + ∇ u 

T 
)]

· n d A − V p ∇p e 

+ 

(
ρp − ρ f 

)
V p g + F c , (2a) 

 p = 

∮ 
∂V p 

r ×
([

−p I + μ f 

(∇ u + ∇ u 

T 
)]

· n 

)
d A + T c , (2b) 

here ρ f is the density of the fluid, g the gravitational accelera-

ion and r indicates the distance from the surface to the center of

he particle. The stress tensor is integrated over the surface of the

article, denoted ∂V p . The out-ward pointing unit normal vector at

he surface is denoted by n and the unit tensor by I . The terms

ρ f V p g and V p ∇p e account for the forces caused by the hydro-

tatic pressure and a constant pressure gradient ∇p e or any exter-
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Fig. 1. Distribution of the Lagrangian grid points over the surface of a spheroidal 

particle. 
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within a threshold is obtained ( I − I < ε). 
nal force that might be imposed to drive the flow ( Breugem, 2012 ).

The force and torque resulting from particle-particle (particle-wall)

collisions are indicated by F c and T c . The fluid velocity u and the

stress tensor −p I + μ f 

(∇ u + ∇ u 

T 
)

appearing in the Newton-Euler

equations are obtained from solving the Navier–Stokes and conti-

nuity equations 

ρ f 

(
∂ u 

∂t 
+ ∇ · u u 

)
= − ∇p e − ∇p + μ f ∇ 

2 u + ρ f f , (3a)

∇ · u = 0 . (3b)

The extra term on the right hand side of the Navier–Stokes

equations indicates the IBM force, active in the immediate vicin-

ity of a particle surface to impose indirectly the no-slip / no-

penetration (ns/np) boundary condition. In other words, a force

distribution f is imposed on the flow such that the fluid velocity

at the surface is equal to the particle surface velocity ( U p + ω 

ω ω p × r ).

Eqs. (1) and (3) are coupled through f and they are solved together.

In the case of spheroidal particles sedimenting in a still fluid

examined here, the three non-dimensional parameters defining the

problem are the Galileo number, the density ratio ρp / ρ f and the

spheroid aspect ratio. The Galileo number Ga is the ratio between

gravitational and viscous forces, defined as 

Ga ≡
√ 

| ρp /ρ f − 1 | gD 

3 
eq 

ν2 
, (4)

where D eq is the diameter of a sphere with the same volume as

the ellipsoidal particle. The polar (symmetric semi-axis) and the

equatorial radius, a and b , respectively define the spheroid aspect

ratio, AR = a/b (see Fig. 1 ). The results will be presented in terms

of the Reynolds number Re = UL/ν, with L and U the characteristic

length and velocity scale (typically the particle equivalent diameter

D eq and terminal velocity) and ν the kinematic viscosity. 

2.2. Numerical method 

2.2.1. Grid geometry 

A uniform ( �x = �y = �z), staggered, Cartesian Eulerian grid

is used for the flow and a Lagrangian grid is employed to repre-

sent the particles as shown in Fig. 1 . Uniform distribution of the
agrangian points over the surface of the particles is obtained by

n additional simulation of point charges moving on the surface of

he spheroid we wish to simulate. Driven by electrical forces, these

harges reach an uniform equilibrium distribution after sufficiently

ong time. The number of Lagrangian points is defined such that

he volume �V l of the Lagrangian grid cells is as close as possi-

le to the volume of the Eulerian grid cells, �x 3 . Assuming that

he Lagrangian grid corresponds to a thin shell of thickness �x the

umber of Lagrangian points can be calculated from 

 l = 

[
( a + �x/ 2 ) ( b + �x/ 2 ) 

2 − ( a − �x/ 2 ) ( b − �x/ 2 ) 
2 

3�x 3 / ( 4 π) 

]
(5)

here a, b are the polar (symmetric semi-axis) and the equatorial

adii of the spheroidal particle . 

.2.2. Flow field solution 

The same pressure-correction scheme used in Breugem (2012) is

mployed to solve the flow field. Eq. (3 a) and (b) are integrated

n time using an explicit low-storage Runge–Kutta method. A first

rediction velocity is used to approximate the IBM force, and a

econd one to compute the correction pressure and update the

ressure field. 

.2.3. Solution of the particle motion 

Breugem (2012) shows that Eq. (2) can be re-written in discrete

orm as 

 

q 
p = U 

q −1 
p − �t 

V p 

ρ f 

ρp 

N L ∑ 

l=1 

F q −1 / 2 

l 
�V l 

+ 

1 

V p 

ρ f 

ρp 

( {∫ 
V p 

u d V 

}q 

−
{∫ 

V p 

u d V 

}q −1 
) 

+ ( αq + βq ) �t 

(
1 − ρ f 

ρp 

)
g + 

(
αq + βq 

ρp V p 

)
�t 

F q c + F q −1 
c 

2 

, (6)

or the linear momentum and 

 

q 
p ω 

ω ω 

q 
p = I q −1 

p ω 

ω ω 

q −1 
p − �tρ f 

N L ∑ 

l=1 

r q −1 

l 
× F q −1 / 2 

l 
�V l 

+ ρ f 

( {∫ 
V p 

r × u d V 

}q 

−
{∫ 

V p 

r × u d V 

}q −1 
) 

+ ( αq + βq ) �t 
T 

q 
c + T 

q −1 
c 

2 

(7)

or the angular momentum where r is the position vector, x − x c ;

hese are integrated in time with the same Runge–Kutta method

sed for the flow. I p ω 

ω ω p is obtained by solving Eq. (7) with the fol-

owing iterative procedure. 

1. As an initial guess I p is set equal to the moment-of-inertia ten-

sor at the previous substep I 
q −1 
p . 

2. ω 

ω ω p is computed from the linear equations I p ω 

ω ω p = B , where B

is the right hand side of Eq. (7) . 

3. The particle rotation during the current substep is indicated

by the rotation matrix A . This is associated to an axis of ro-

tation in the direction of 

(
ω 

ω ω 

q 
p + ω 

ω ω 

q −1 
p 

)
/ 2 and an angle of rota-

tion 

∣∣∣(ω 

ω ω 

q 
p + ω 

ω ω 

q −1 
p 

)
/ 2 

∣∣∣. (αq + βq 

)
. �t . The rotation matrix is used

to update the moment-of-inertia tensor from the previous sub-

step, I p = A I 
q −1 
p A 

−1 . 

4. The new I p is used as initial guess in step 1 until convergence
new old 

p p 
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Fig. 2. Two-dimentional sketch of the iterative method used to find the nearest distance between two ellipsoids. ( x, y ) k are the current guesses for nearest points. 
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This procedure typically requires less than 5 iterations to con-

erge. The orientation of the particle and the position of the La-

rangian points are updated by means of the rotation matrix A .

he position of the particle center and the velocity at the surface

f particle are finally computed as 

 

q 
c = x 

q −1 
c + 

( αq + βq ) 

2 

�t 
(
U 

q 
p + U 

q −1 
p 

)
, (8a) 

 

(
X 

q 

l 

)
= U 

q 
p + ω 

ω ω p ×
(
X 

q 

l 
− x 

q 
c 

)
. (8b) 

.2.4. Lubrication and collision models 

ubrication model. A particle immersed in a viscous liquid experi-

nces lubrication forces while approaching a wall or another parti-

le. These are due to the film drainage and have an analytical ex-

ression in the Stokes regime ( Brenner, 1961 ). The lubrication force

s well captured by the IBM method as long as the fluid in the

hin gap between the two solid bodies is well resolved. However,

or gaps smaller than the Eulerian mesh size, lubrication is under-

redicted. To compensate for this inaccuracy and avoid computa-

ionally expensive grid refinements, a correction model based on

symptotic expansions of the lubrication force in the Stokes regime

s used, see also Breugem (2010) ; Costa et al. (2015) . Since lubri-

ation is essentially a two-body problem dominated by the flow in

he narrow gap separating two surfaces ( Claeys and Brady, 1993 ),

pheroidal particles are represented as spheres with radius equal

o the local radius of curvature of the spheroidal particle. In other

ords, we approximate the spheroidal particles near contact as

pheres with the radius of curvature of the closest points of con-

act and same mass as the original spheroid and resort to an ana-

ytical solution for poly-disperse suspensions of spherical particles

 Jeffrey, 1982 ). From a computational point of view, the two diffi-

ulties are (i) to find the closest points on the surface of the two

llipsoids and (ii) find the local radii of curvature. The efficient it-

rative method proposed by Lin and Han (2002) is employed here

o find the closest distance between the two particles. The method

an be summarised as follows, see Fig. 2 for a visual clarification

n 2D. 

1. The search algorithm starts from two arbitrary points on the

surface of the two particles ( x, y ) k , assumed initially as the

nearest points. 

2. Construct two balls completely inside the ellipsoids and tangent

to the inner surface at the current guess for the nearest points.

3. Find a new guess (x, y ) k +1 by the intersection of the line of

centres ( c x , c y ) 
k of the two balls and the surface of the two

spheroids. 

4. If not converged, go back to step 2. Convergence is obtained

when the change of the slope of the line that connects the clos-
est points is below a given threshold. o  
The procedure converges faster as the radius of the con-

tructed balls increases, however these should fit entirely inside

he spheroids. 

Once the nearest points are known, the Gaussian radius of cur-

ature R i is calculated based on the meridional and normal radii of

urvature M and N , 

 = 

a 2 b 2 (
( a sin �) 

2 + ( b cos �) 
2 
)3 / 2 

, 

N = 

b 2 (
( a sin �) 

2 + ( b cos �) 
2 
)1 / 2 

. (9) 

here the semi axes a and b are the polar and the equatorial ra-

ius of the spheroid and the angle � defines the latitude of the

oint at which the radius of curvature is being calculated. The

aussian radius of curvature defines the radius of the best fitting

phere tangent to the given surface point 

 i = 

√ 

MN = 

a 2 b 

( a sin �) 
2 + ( b cos �) 

2 
. 

ote that the best fitting sphere is different from the balls used in

he algorithm above and its radius R i can be larger than a and b . 

The lubrication model employed in this study is based on the

symptotic solution of Jeffrey (1982) for spheres with different

adii. This two-parameter solution considers normal lubrication ef-

ects given by 

F Lub = −6 πμR i �U n [ λ(κ, ε) − λ(κ, ε L ) ] , (10)

here R i is the radius of curvature, κ the ratio between the radii

f curvatures of the two spheres and ε the gap width (closet dis-

ance) normalized by the larger radius of curvature. λ is the Stokes

mplification factor defined here as in Jeffrey (1982) . ε L defines

he normalized gap width at which the lubrication model becomes

ctive. To account for the presence of surface roughness, and to

imit the lubrication forces to finite values, a threshold width be-

ow which the value of the Stokes amplification factor becomes

onstant ( ε ≤ ε r : λ(κ, ε) = λ(κ, ε r ) ) is introduced. We use here

 L = 0 . 025 and ε r = 0 . 001 in the case of particle-particle interac-

ions and ε L = 0 . 05 and ε r = 0 . 001 for particle-wall interactions. A

chematic representation of the lubrication model is given in Fig. 3 .

ubrication corrections responsible for translational and rotational

hearing are neglected in this study due to their slower divergence

ith the gap width: �F ∝ ln ε versus �F ∝ 1/ ε for normal lubrica-

ion. 

To validate the lubrication model, we compute the normal force

etween two spheres of different radii ( R 1 /R 2 = 1 . 5 ) approaching

t equal velocity. Results for the interaction force with and with-

ut the lubrication correction are displayed in Fig. 4 , normalized
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Fig. 3. Schematic representation of the lubrication model applied to a sphere ap- 

proaching a plane wall. A similar approach is used for particle-particle interactions. 
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Fig. 4. Normal force between two unequal spheres ( R 1 /R 2 = 1 . 5 ) approaching at equal v

grid points per larger diameter, compared to the analytical solution of Jeffrey (1982) . The
y the Stokes drag in free space ( F / F sd ). Without correction, the re-

ults are in good agreement with the analytical solution of Jeffrey

1982) only when the grid can resolve the flow between the solid

bjects. For smaller gaps, Eq. (10) correctly captures the increase

n lubrication. 

ollision model. When the gap width between two spheroids re-

uces to zero, the lubrication correction is switched off and a soft

phere collision model ( Costa et al., 2015 ) activated. To compute

he collision forces we proceed as for the lubrication correction

odel, i.e. the spheroidal particles are approximated as spherical

articles with the same mass as the whole particle and with a

adius corresponding to the local curvature at the contact points.

he radii of the approximating spheres remain constant during the

ollision, simplifying the problem to that of the collision between

wo unequal spheres. The centres of the approximating colliding

pheres are stored at the time step before the gap width becomes

egative and updated during the collision using the particle veloc-

ty and the rotation matrix introduced above. 

The soft sphere model used in Costa et al. (2015) is employed

ere to calculate the normal and tangential collision force. In this

odel, the forces are computed using a linear spring-dashpot sys-

em in the normal and tangential directions, with an additional

oulomb friction slider to simulate friction as shown in Fig. 5 . 

The collision time T is allowed to stretch over N time steps pro-

ided that the collision time is still much smaller than the charac-

eristic time scale of the particle motion. This makes the numeri-
elocity with and without lubrication correction for two grid resolutions 24 and 36 

 forces are normalized by the Stokes drag F sd in free space for each particle. 
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Fig. 5. Collision model for spheroidal particles. Sketch of (a) the geometrical and kinetic parameters and (b) the spring-dashpot model used to compute normal and tangential 

forces. 
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al simulation of a wet collision more realistic since the fluid has

nough time to adapt to the sudden change in the particle velocity

s reported in Costa et al. (2015) . 

In brief (more details can be found in Costa et al. (2015) ), the

ormal collision force depends on the overlap between the two

articles and on the normal relative velocity of the surface points

ocated on the line-of-centers. The normal direction n i j is defined

y the vector connecting the centres of the two colliding spheres,

 i j = 

x j − x i 

|| x j − x i || , (11) 

he penetration as 

i j,n = 

(
R i + R j − || x j − x i || 

)
n i j , (12) 

nd the normal relative velocity u i j,n = 

(
u i j · n i j 

)
n i j with 

 i j = 

(
u i + ω 

ω ω i × d i + R i ω 

ω ω i × n i j 

)
−

(
u j + ω 

ω ω j × d j + R j ω 

ω ω j × n ji 

)
. 

(13) 

here d i and d j are the vectors that connect the centres of

pheroids to the centres of the approximated spheres, while R i and

 j are the radii of the approximating spheres with centres at x i and

 j . The normal collision force acting on sphere i when colliding

ith sphere j is then expressed as 

 i j,n = −k n δδδi j,n − ηn u i j,n (14) 

ith model coefficients 

 n = 

m e 

(
π2 + ln 

2 
e n,d 

)
( N�t ) 

2 
, ηn = −2 m e ln e n,d 

N�t 
, m e = 

(
m 

−1 
i 

+ m 

−1 
i 

)−1 
. 

(15) 

 n and ηn are the normal spring and dashpot coefficients, com-

uted by solving the motion of a linear harmonic oscillator re-

uiring that Van Der Hoef et al. (2004) (i) The magnitude of the

ormal relative velocity at the end of the collision is equal to the

ormal restitution coefficient e n, d times the normal velocity at the

eginning of the collision. (ii) There is no overlap at the end of the

ollision ( t = N�t). 

The terms m i and m j in the expression above are the masses

f the spheroidal particles and N is the number of time steps over

hich the collision is stretched. Large values of N cause a large

verlap between particles and therefore an unrealistic delay of the
article rebound, while small values of N result in a lack of accu-

acy as the collision force may be very large. Here, we use N = 8 . 

The component of the collision force F i j,t in the tangential di-

ection t i j is computed similarly with a Coulomb friction included

o model the possibility of sliding motion. The tangential force act-

ng on sphere i when colliding with sphere j is expressed as: 

 i j,t = min 

(|| − k t δδδi j,t − ηt u i j,t || , || − μc F i j,n || 
)
t i j , (16) 

here the relative tangential velocity u i j,t = u i j − u i j,n and the tan-

ential displacement is denoted δδδi j,t . This is computed during the

ollision by integration of the relative tangential velocity 

∗n +1 

i j,t = A · δδδn 
i j,t + 

∫ t n +1 

t n 
u i j,t d t. 

t should be noted that, to comply with Coulomb’s condition, the

angential displacement is saturated when the particles start slid-

ng ( Luding, 2008 ), 

n +1 
i j,t 

= 

{
δδδ∗n +1 

i j,t 
, i f || F i j,t || ≤ μc || F i j,n || , 

( 1 /k t ) 
(
−μc || F i j,n || t i j − ηt u i j,t 

)
, i f || F i j,t || > μc || F i j,n || . 

(17) 

The coefficients in Eq. (16) are defined as 

 t = 

m e,t 

(
π2 + ln 

2 
e t,d 

)
( N�t ) 

2 
, ηt = − 2 m e,t ln e n,t 

N�t 
, m e,t = 

(
1 + 1 /K 

2 
)−1 

m e .

here k t and ηt are the tangential spring and dashpot coefficients

nd K is the normalized particle radius of gyration for the approx-

mating spheres ( 
√ 

2 / 5 ). 

The normal and tangential collision forces at the points of con-

act are finally transferred to the spheroids centres 

 

c 
i j = F i j,n + F i j,t , (18a) 

 

c 
i j = 

(
d i + R i n i j 

)
× F i j,t + d i × F i j,n . (18b) 

.2.5. Parallelization 

The numerical algorithm detailed in the previous subsections is

mplemented in Fortran with MPI libraries for parallel execution on

ulti-processor machines with distributed memory. For the paral-

elization of the Navier–Stokes equations we adopt a standard do-

ain decomposition in two dimensions (streamwise and spanwise)
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Fig. 6. Angles defining the orientation of the spheroid: θ defines the angle between 

the symmetric axis of the spheroid and the z -axis while φ indicates the angle be- 

tween the projected symmetric axis in the xy plane and the x -axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Spanwise component of the angular velocity of spheroids with AR = 2 and 

1/3 against the analytical solution by Jeffery (1922) . Time and angular velocity are 

non-dimensionalized with 2 π / G and the shear rate G , respectively. 
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since a 3D parallelization might result in an unbalanced distribu-

tion of the computational load among the processors when a pref-

erential direction exists, e.g. in the case of sediments. The particle-

related computations follow a master-slave parallelization similar

to that used in Breugem (2012) . The processor where the center

of a particle is located is denoted as master while the neighbours

containing at least one Lagrangian point as slaves. The method

requires that a particle fit entirely inside one processor domain,

so that it cannot belong to more than 3 slaves. To find the slave

neighbors, the ellipsoid is projected in the plane of parallelization.

From the equation of the projected ellipse, we compute the inter-

sections with the boundaries of the master domain and thus iden-

tify the slave neighbours. The slave processor communicates the

data to the master processor, which is the one responsible for the

computations of the particle motion. 

3. Validation 

3.1. Spheroids in uniform shear flow 

The equations of motion of spheroidal particles derived by

Jeffery (1922) have been widely used in the literature to track the

motion of point particles, particles smaller than the smallest flow

scale, at vanishing particle Reynolds number Re p ( Marchioli and

Soldati, 2013; Zhao et al., 2014 ). Jeffery (1922) also derived the an-

alytical solution for the angular velocities ˙ θ and 

˙ φ in the inertialess

regime, Re p = 0 , in a simple shear flow, 

˙ θ = − G 

a 2 + b 2 

(
a 2 cos 2 θ + b 2 sin 

2 θ
)
, (19a)

˙ φ = 

G | a 2 − b 2 | 
4 

(
a 2 + b 2 

) sin 2 θsin 2 φ, (19b)

where the semi axes a and b are the polar (symmetric semi-axis)

and the equatorial radius of the spheroid, G the imposed shear

rate, θ (0 ≤ θ < π ) and φ (0 ≤ φ < 2 π ) the angles defining the

orientation of the spheroid, see Fig. 6 . 

In this study, we simulate two neutrally buoyant spheroids with

aspect ratios of AR = 2 and 1/3 in a plane Couette flow at Re p =
0 . 1 . Re p is defined by shear rate G and the equivalent particle di-

ameter D eq , i.e. the diameter of a sphere with the same volume of
he original spheroid: 

e p ≡
GD 

2 
eq 

ν
, D eq = 2 

(
ab 2 

)1 / 3 
. (20)

Simulations are performed in a domain of size 10 D eq × 10 D eq 

10 D eq with 32 grid points per D eq and periodic boundary condi-

ions in the directions perpendicular to the velocity gradient. The

nitial particle orientation is set to φ = θ = 0 with no initial an-

ular velocity. The particles tumble around the spanwise (normal

o the shear plane) axis, as deduced by the analytical solution re-

orted above with period T = 

2 π
G ( AR + 1 / AR ) . The results, shown

n Fig. 7 , exhibit excellent agreement with the analytical solution. 

.2. Oblate ellipsoid in cross flow 

In this test case, the position of the centre is fixed while the

article is allowed to rotate freely around all three axes. Indepen-

ent of the initial orientation, oblate particles align their semi-

inor axis with the flow direction. This is consistent with the find-

ngs by Feng et al. (1994) that elliptic particles fall with their ma-

or axis perpendicular to the gravity direction. As observed by Clift

t al. (2005) and Kempe et al. (2009) , given an initial deflection,

he particle oscillates around one of its major axes (depending on

he plane of deflection) and reaches a final equilibrium with its

inor axis aligned with the flow. Moreover, by increasing the ratio

f particle to fluid density, the period and the magnitude of the

scillations increase. 

The simulations are performed here for an oblate particle with

R = 1 / 2 . 5 and different density ratios ρp /ρ f = 2 , 4, 8 and 16 in

 numerical domain of 15 D eq × 100 D eq × 15 D eq in the spanwise

 , streamwise y , and wall-normal z directions. The domain is peri-

dic in the wall-parallel directions with two walls moving at same

peed in the y direction to create a uniform cross flow. The reso-

ution is 32 grid point per D eq and the particles Reynolds number,

efined by the incoming flow velocity U 0 and the equivalent par-

icle diameter D eq , Re p = 100 . The initial deflection θ = π/ 4 , with

the angle between the particle minor (symmetric) axis and the

 -axis. The evolution of θ is reported in Fig. 8 for different den-

ity ratios. It is observed, as expected, that the particle reaches an

quilibrium with its major axis perpendicular to the flow direction

fter oscillations of the minor axis around the x -axis. The magni-

ude of oscillations increases with the density ratio. 
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Fig. 8. Oscillating oblate in crossflow. Time evolution of the angle φ between the 

particle minor (symmetric) axis and the z axis for different density ratios ρp /ρ f = 

2 , 4, 8 and 16, Re p = 100 and the aspect ratio AR = 1 / 2 . 5 . 
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. Results 

We study the sedimentation of isolated and particle pairs in a

iscous fluid. The results focus on the effect of shape and Galileo

umber on the particle motion. 

.1. Sedimentation of isolated spheroids 

The sedimentation of isolated spheroids is simulated in a do-

ain of 15 D eq × 15 D eq × 125 D eq in the x, y and z directions, with

ravity acting in the negative z direction. Periodic boundary condi-

ions are imposed in the horizontal directions whereas a free sur-

ace and a rigid wall are used at the upper and bottom boundary. 

We investigate spheroids with aspect ratios AR = 1 / 5 , 1 / 3 , 1 , 3

nd 5 with a resolution of 32 grid points per D eq for all cases ex-

ept for the particles with aspect ratios AR = 1 / 5 and 5 where 48

rid points per D eq are used. The resolution is higher than what

s typically used for spherical particles ( Fornari et al., 2016b; Pi-

ano et al., 2015; Uhlmann and Doychev, 2014 ) to keep an ade-

uate number points per semi-minor axis of the spheroid, which

ecreases with the aspect ratio. High grid resolution is also needed

o capture the flow structures in the unsteady particle wake, espe-

ially at the highest settling speed. The spheroidal particle starts

alling from rest with its major axis perpendicular to the falling di-

ection. This orientation is chosen because other initial orientations

re not stable. It is observed here, in agreement with findings in

he literature Ern et al. (2012) ; Feng et al. (1994) , that a spheroidal

article eventually falls with its major axis perpendicular to the

ravity direction independent of its initial orientation. 

For isolated spheres, the steady-state settling velocity u t is often

xpressed in terms of a terminal Reynolds number, Re t ≡ u t D eq / ν .

mpirical relations can be found in the literature to express Re t as

unction of Ga . Yin and Koch (2007) , among others, report the drag

oefficient for isolated spheres as a function of Re t , from which the

elation between Ga and Re t can be obtained as shown in Fornari

t al. (2016b ): 

a 2 = 

{ 

18 Re t 

[ 
1 + 0 . 1315 Re ( 

0 . 82 −0 . 05 log Re t ) 
t 

] 
, i f 0 . 01 < Re t ≤ 20 , 

18 Re t 
[
1 + 0 . 1935 Re 0 . 6305 

t 

]
, i f 20 < Re t ≤ 260 . 

(21) 

These relations are used to justify the length of our computa-

ional domain in the gravity direction (125 D eq ). Indeed the termi-
al velocity, Re t , obtained at Ga = 80 and 180 differs by approxi-

ately 2% from the predictions using Eq. (21) ( Re t = 83 and 243,

ompared to the predicted values of 85 and 248). 

Jenny et al. (2004) performed a parametric study for sediment-

ng spheres, reporting a diagram of flow regimes in the Ga − ρp /ρ f 

arameter plane. Uhlmann and Dušek (2014) studied the sedimen-

ation of a sphere in a viscous fluid at the fixed density ratio

p /ρ f = 1 . 5 and found four different regimes. Below Ga ≈ 155 a

pherical particle settles steadily on a straight vertical path with an

xisymmetric wake consisting of a single toroidal vortex. The wake

ecomes oblique (with planar symmetry) as the Galileo number

ncreases above 155, and the particle experiences a finite horizon-

al drift. A pair of thread-like quasi-axial vortices appear in this

egime. For Ga from approximately 185 to 215 the particle exhibits

eriodic oscillations and the wake becomes time-dependent, still

reserving the planar symmetry; the wake vortices evolve into a

airpin structure. Finally as Ga further increases, the planar sym-

etry of the wake is broken and the particle follows a chaotic mo-

ion. Our results for spheres are consistent with the findings of

enny et al. (2004) ; Uhlmann and Dušek (2014) and will not be

eported here. 

When considering the settling of isolated spheroids, we observe

wo different types of unsteady motion, different for oblates and

rolates as Ga exceeds the critical threshold for the first bifurca-

ion. Steady and unsteady wakes of spheroids with aspect ratios

R = 1 / 3 , 1 and 3 are depicted in Fig. 9 . The prolate particle ro-

ates around the vertical ( z ) axis, while the oblate particle performs

he so called zigzagging motion ( Mougin and Magnaudet, 2006 ).

he details of the particle motions when increasing the Galileo

umber are discussed next for the oblate, AR = 1 / 3 , and the pro-

ate particle, AR = 3 . 

.1.1. Oblate particles 

Chrust (2012) fully studied the influence of aspect ratio AR ,

ensity ratio ρp / ρ f and Ga on the settling state of oblate parti-

les. In this study we report simulations of settling oblate particles

ith aspect ratio AR = 1 / 3 at different Galileo numbers. The den-

ity ratio chosen here is 1.14 and the aim is to reproduce one line

n the diagram of reported in Chrust (2012) with a closer look at

he transitions; these results serve also as validation for our nu-

erical code. 

Four different states for the particle motion are observed as

a varies between 50 to 250. The oblate particle, AR = 1 / 3 , falls

long a straight vertical path with an axisymmetric wake for Ga �
20 (corresponding to Re t ≈ 92). For Ga � 120 the particle path

s not vertical anymore, exhibiting an oscillatory motion. As Ga ex-

eeds the critical value of 120, the oblate particle experiences a

orizontal drift in a random direction n . The motion is a periodic

scillation with, on average, a fully vertical fall for Ga � 210 (corre-

ponding to Re t ≈ 165) whereas a weakly oblique oscillatory state

s observed in the range 210 � Ga � 240. For Ga � 240 the particle

otion becomes chaotic with patterns of quasi-periodicity. These

tates are indicated in Fig. 10 by the particle trajectories in the

lane where the oscillation occurs. The critical values for the onset

f the different motions are consistent with the values reported in

hrust (2012) ; note that the Galileo number, defined in that study

iffers by a factor 
√ 

π/ 6 from the definition used here. 

A thorough discussion on the oscillatory paths of disc-like cylin-

ers and oblate spheroids can be found in Ern et al. (2012) .

agnaudet and Mougin (2007) and Yang and Prosperetti (2007) re-

ate the path instability to wake instabilities. We therefore analyze

he wake vortices at the onset of transition to understand their re-

ation to the particle motion. As shown in Fig. 11 a), initially the

ake of an oblate particle consists of a single toroidal vortex, at-

ached to the particle, similar to that of spherical particles in the

teady vertical regime. As the instability develops, the particle ro-
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Fig. 9. Iso contours of vertical velocity, divided by ν/ D eq , for stable and unstable wake behind settling spheroids of aspect ratios AR = 1 / 3 , 1 and 3. The Galileo number is 

indicated in each plot. Density ratio ρp / ρ f is equal to 1.14 in the steady wake regimes and 2.36 in the unsteady ones. 

Fig. 10. Different states of particle motion in free fall for an oblate particle with AR = 1 / 3 and ρp /ρ f = 1 . 14 . An example trajectory (after transients) corresponding to each 

state is depicted in the xz plane where the oscillation takes place. 
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Fig. 11. Development of vortices in the wake of an oblate particle with AR = 1 / 3 , Ga = 180 and ρp /ρ f = 1 . 7 . Iso-surfaces of Q-criterion equal to 5% of its maximum are 

used to identify the vortices. 
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Fig. 12. Terminal Reynolds number Re t , versus Ga for oblate spheroids with AR = 

1 / 3 and ρp /ρ f = 1 . 14 . Linear fitting are also reported for the steady and unsteady 

regimes. The blue dotted line in the figure indicates the predictions from the pro- 

posed model, see text and Appendix A . 
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>  
ates around one of its major-axes, perpendicular to gravity and

o the horizontal direction in which it is drifting. When the an-

le with respect to the horizontal direction increases, a part of the

oroidal vortex detaches forming the head of a hairpin vortex (see

ig. 11 b); this soon develops further into a full hairpin structure.

his vortex pushes the flow near and around the particle upwards,

orming a low pressure region that generates a torque on the par-

icle in the opposite direction. Owing to inertia, the oblate particle

ventually reaches the opposite inclination. New hairpin vortices

hen detaches on the other side and so on each time the particle

hanges orientation (see Fig. 11 c). The formation of these vortices

s also discussed by Auguste et al. (2010) . 

As the oblate particle experience oscillations, its vertical veloc-

ty decreases during the transient, which can be explained by con-

ervation of energy of the system. Since the first and the second

airpin vortex are the two strongest in terms of their magnitude,

he particle experiences two sudden decelerations before settling

o the final regime, characterised by oscillation of its terminal ve-

ocity of the order of 1 − 2% of its settling speed. The terminal

eynolds number, Re t , based on the averaged settling speed, is de-

icted for different Ga numbers in Fig. 12 where we also report

inear fitting of the data in the steady and unsteady regimes. 

The slope observed in the steady vertical regime ( Ga � 120)

hanges and reduces in the unsteady configurations ( Ga � 120). A

imple model is proposed to predict the terminal Reynolds number

or spheroidal particles at low Galileo numbers based on the as-

umption that for oblates, spheres and prolate particles the steady

ow (wake) regime is similar and only the frontal surface area dif-

ers. As shown in Fig. 12 the model provides a good estimate up

ill Ga ≈ 120 where the flow regime is steady and the particle

ath is vertical. The details of the suggested model can be found in

ppendix A . 

.1.2. Prolate particles 

In this section we study sedimenting prolate particles with

R = 3 , density ratio ( ρp / ρ f ) varying in the range [1.14, 5.7] and

ifferent Galileo numbers between 20 and 250. Interestingly, the

imulations show that the regime particle motion is independent

f density ratio within the range under investigation. We will

herefore focus on the results for density ratio ρp /ρ f = 1 . 14 . A sim-
lar results, indicating the importance of fluid inertia in comparison

o particle inertia, is found for channel flow laden with finite size

articles in Fornari et al. (2016a ). 

The onset of secondary motions for prolate particles with AR =
 is observed at considerably lower Galileo numbers than for

blate particles. The settling particle is found to rotate around the

ertical direction, z -axis, reaching a constant vertical and angu-

ar velocity after the initial transient for Ga exceeding the criti-

al value of 70. The terminal Reynolds number, Re t , and the z –

omponent of the angular velocity, �z , are depicted in Fig. 13 as

unction of Ga . We report here the regime velocities, reached after

n initial transient corresponding to a falling distance of about 50

 eq . The dependence of the terminal velocity on the Galileo num-

er can be approximated by a line for Ga < 100, even when the

article undergoes rotation. The slope is found to decrease for Ga

 100: here Re t displays a sudden decrease, which we will explain
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Fig. 13. Terminal Reynolds number Re t and terminal angular velocity �z , divided 

by ν/ D 2 , versus Ga for prolate spheroids with AR = 3 and ρp /ρ f = 1 . 14 . The re- 

sults of the model proposed here to estimate the settling speed are shown by the 

blue dotted line. White background indicates the steady regime, grey refers to the 

regime where the particle rotates around the vertical axis and the wake consists of 

four thread-like quasi-axial vortices and pink displays the regime with spiral wake 

structures (see Fig. 14 ). The red triangles pertain simulations with initial noise, see 

text. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Fig. 14. Vortical structures in the wake of a prolate particle with AR = 3 and 

ρp /ρ f = 1 . 14 for different Galileo numbers corresponding to the different regimes 

presented in Fig. 13 . Iso-surfaces of Q-criterion equal to 5% of its maximum are 

used to identify the vortices at Galileo numbers 60, 80 and 180, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Terminal Reynolds number Re t , versus the aspect ratio AR for three dif- 

ferent Galileo numbers at ρp /ρ f = 1 . 14 . The region where the particles experience 

an unsteady motion is indicated by the light green background. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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below by looking at the flow in the particle wake. As for the oblate,

assuming the drag depends only on the frontal area fits the data

nicely at lower Ga , see appendix A . For Ga ∈ [70, 100], the angular

velocity increases from zero as 
√ 

Ga − 70 befor e settling t o a linear

law as Ga exceeds 100. 

To better understand the sudden drop of the vertical and an-

gular velocity at Ga ≈ 100, we study the structure of the wake

behind the prolate particle for the regimes indicated by the differ-

ent background colours in Fig. 13 . As shown in Fig. 14 a the wake is

steady and symmetric for Ga < 70, consisting of two recirculation

regions at the sides. This regime corresponds to the white colour in

Fig. 13 . As soon as the particle rotates around the gravity direction

four thread-like quasi-axial vortices appear in its wake ( Fig. 14 b);

these vortices are observed for 70 < Ga < 100. This regime, indi-

cated by grey colour in Fig. 13 , is very sensitive to external per-
urbations and indeed any small noise such as the presence of an-

ther particle or the vicinity of a wall can trigger an instability.

his is eventually observed for Ga > 100 in the form of helical

ortices (see Fig. 14 c representing the flow at Ga = 180 ). The flow

inetic energy increases suddenly when the wake becomes helical,

esulting in the reduction of the particle vertical velocity shown

bove. The drop in Re t (cf. Fig. 13 ) can therefore be explained by

he instability of the vortices in the wake. This occurs at Ga = 100

n the simulations presented here, without any additional exter-

al noise. As mentioned above, however, the exact value of Ga at

hich the helical vortices become unstable depends on the ambi-

nt noise, suggesting that we are in the presence of a subcritical

nstability. To document this, simulations are performed for Ga ∈
70, 100] with particles starting from rest with initial orientation

ifferent from the stable one (major axis not perpendicular to the

ravity direction). This creates noise in the system as the particles

otate to fall on their stable orientation, causing the occurrence of

nstabilities of the wake vortices. The final settling and angular ve-

ocities extracted from these simulations are shown in Fig. 13 by

ed triangles. The results reveal that we can find different solu-

ions in the region depicted in grey and the velocities follow the

ehaviour at higher Galileo number once noise triggers the wake

nstability. 

The effect of the particle shape on the terminal velocity and

n the onset of secondary motions is also investigated for par-

icles with aspect ratios AR = 1 / 5 and 5, and ρp /ρ f = 1 . 14 . The

erminal Reynolds numbers at Ga = 80 , 180 and 250 are depicted

n Fig. 15 as function of the spheroid aspect ratio; the Re t pre-

icted by the empirical relation in Yin and Koch (2007) for spheres

s also indicated in the figure for the two lowest Ga . The critical

eynolds number Re cr above which the particles undergo an un-

teady motion is determined and indicated by the light green back-

round. Spherical particles have the largest settling speed since the

phere corresponds to the object of minimum area perpendicular

o the settling direction for a given volume. If the wakes are quasi-

teady for all aspect ratios, Ga = 80 , the minimum cross-section

an therefore explain the maximum terminal velocity. This expla-

ation, however, does not hold at higher Ga when the particle mo-

ion and the flow become unsteady. In the figure, we also report

he prediction of the simple model assuming the settling speed

an be directly related to the frontal area for Ga = 80 , when the
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Fig. 16. Sequence of Drafting-Kissing-Tumbling (DKT) of two equal spheres from vi- 

sualizations at non-dimensional times t ∗ = 0 , 20, 30, 36 and 48 in units of 
√ 

D eq /g . 
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ake is quasi-steady. We notice good agreement for oblate parti-

les and a slightly lower accuracy for prolate spheroids, which can

e explained by the rotational motion they already experience at

a = 80 . 

.2. Drafting-Kissing-Tumbling (DKT) of spheroids 

Next, we study Drafting-Kissing-Tumbling (DKT) of spheroidal

articles with different aspect ratios. This peculiar pair interaction

as been studied for two equal spheres both experimentally ( Feng

t al., 1994; Fortes et al., 1987 ) and numerically ( Breugem, 2012;

lowinski et al., 2001; Patankar et al., 20 0 0 ). The process is repro-

uced here in Fig. 16 from our simulations with two equal spheres.

he results are reported in non-dimensional time t ∗ = t 
√ 

D eq /g .

he trailing particle is attracted into the wake of the leading one

nd drafted towards it with increasing velocity (drafting phase),

ntil they are in contact (kissing phase). The particles in contact

orm a long body with its major axis parallel to gravity. As dis-

ussed previously, this orientation is unstable, as a long body tends

o fall with its major axis perpendicular to the falling direction. The

wo particles therefore tumble ( Prosperetti and Tryggvason, 2007 )

tumbling phase). 

We consider now non-spherical particles with the same vol-

me as those in the numerical studies of Glowinski et al. (2001) .

imulations are performed at Ga = 80 , with a density ratio of 1.14

or spheroids with aspect ratios 1, 3 and 1/3. The correspond-

ng terminal Reynolds number are 83, 64 and 53 respectively,

ee Fig. 15 . 
The two particles start from rest and with their stable orienta-

ion (major-axis perpendicular to the falling direction). The initial

rientation of the spheroids, defined by the direction of the sym-

etry axis, are given in Table 1 for all 5 cases under investigation.

or oblate and spherical particles, the symmetry axis is in the ver-

ical direction whereas it is in the horizontal plane for prolates.

ig. 17 shows the initial position and orientation. For prolate parti-

le pairs, among all possible initial conditions, we vary the relative

ngle between the projection of the major axis in a plane perpen-

icular to gravity. Three cases with angles of 0 °, 45 ° and 90 ° are

nvestigated, see Fig. 17 c)-e) where colors are used only for a bet-

er visualization. The initial position of the centre of the leading

article, denoted as P 1 , is set to 0.5 L x , 0.5 L y and 0.8 L z , where L x ,

 y and L z are the dimensions of the numerical domain. The trailing

article, denoted as P 2 , is above P 1 at a vertical distance between

he particle surfaces equal to D eq . An offset of 0.1 D eq is introduced

n the horizontal direction ( y −direction for the sake of clarity) to

rigger the DKT ( Breugem, 2012; Feng et al., 1994 ). To be able to

etect the particle interactions, a relatively high resolution of 48

rid cells per equivalent diameter is chosen. The boundary condi-

ions and the dimensions of the computational domain are those

sed for a single sedimenting particle, except in the gravity direc-

ion where the length is reduced to L z = 45 D eq . 

The time history of the nearest distance between the two set-

ling particles is reported in Fig. 18 : the particle shape indeed al-

ers the DKT and the tumbling disappears in some cases. For the

blate pair and the prolate with 90 ° angle between the major axes

f the two particles, the tumbling phase disappears and the par-

icles continue in contact until they hit the bottom wall, similarly

o what observed in Brosse and Ern (2011) for two identical disks.

he time duration of the drafting and kissing phases are listed in

able 2 together with the increase of the maximum vertical veloc-

ty of the trailing particle with respect to the case of an isolated

article. 

This increase of the velocity of the trailing particle depends on

he overlap with the wake of P 1 . For the cases denoted as 3 − 0 ◦

nd 3 − 90 ◦, the particles preserve the angle between their major

xes while drafting. For case the 3 − 45 ◦, instead, P 2 starts rotating

n the drafting phase, reducing the angle between the major axes

f the two to about 12 °. More details about the secondary motions

f the particles are given later in this section. The reduced differ-

nce in the velocity of P 2 between cases 3 − 0 ◦ and 3 − 45 ◦ is thus

ue to the rotation of P 2 , which reduces the relative angle and in-

reases the overlap with the wake of P 1 ; therefore the two cases

re similar in terms of overlap in the drafting phase. The velocity

f the leading particle P 1 also increases as P 2 approaches owing to

he lubrication forces between the particles. The duration of the

rafting phase is the longest for case 3 − 90 ◦ due to the minimum

verlap between P 2 and the wake of P 1 . This phase is also rela-

ively long for the oblate case despite of the maximum increased

elocity of P 2 ; we attribute this to the lubrication forces between

he oblate particles just before the kissing phase. 

Particle pair interactions affects the statistics of settling suspen-

ions in the dilute regime, as shown by the intermittent behaviour

eported in Fornari et al. (2016b ) for spherical particles. The aver-

ge vertical velocity of the two particles, normalized by the ter-

inal velocity of an isolated particle, is therefore depicted versus

ime in Fig. 19 . For spheres, the average of the two particle veloc-

ties first increases to ≈ 1.4 and then converges to 1 as the par-

icles starts the tumbling phase, meaning that the interaction be-

ween the two does not affect the vertical velocity after the par-

icles move apart from each other. For the prolate particles, cases

 − 0 ◦ and 3 − 45 ◦, the average vertical velocity converges to ap-

roximately 0.92, lower than the terminal velocity of an isolated

rolate particle at Ga = 80 . This reduction is caused by the change

n the wake regime as helical vortices develop in the wake of the
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Table 1 

Initial orientations of the spheroids at t ∗ = 0 for all studied cases. The orientation vector 

is defined by the direction of the particle symmetry axis. 

Case 1 1/3 3 − 0 ◦ 3 − 45 ◦ 3 − 90 ◦

Aspect ratio 1 1/3 3 3 3 

Initial orientation of P 1 — (0, 0, 1) (1, 0, 0) (1, 0, 0) (1, 0, 0) 

Initial orientation of P 2 — (0, 0, 1) (1, 0, 0) ( 
√ 

2 / 2 , 
√ 

2 / 2 , 0) (0, 1, 0) 

Fig. 17. Initial particle configuration for all studied cases a) 1, b) 1/3, c) 3 − 0 ◦, d) 3 − 45 ◦ and e) 3 − 90 ◦ projected in the y − z plane, with the z parallel to gravity. φ is the 

angle between the symmetric axis of the prolate particle and the x -direction, normal to the page. 

Fig. 18. Nearest distance d 12 between the surfaces of the particle pairs, normalized 

by the equivalent diameter D eq , versus non-dimensional time t ∗ for all studied cases. 

Table 2 

Increase of the maximum vertical velocity of the trailing particle, compared to 

an isolated particle, and time durations of the drafting and kissing phase for the 

cases considered. The values are reported in non-dimensional time t ∗ = t 
√ 

D eq /g . 

Case 1 1/3 3 − 0 ◦ 3 − 45 ◦ 3 − 90 ◦

Velocity increase of P 2 46 .68% 51 .06% 49 .64% 48 .19% 31 .21% 

Drafting period 26 .25 30 .29 27 .32 27 .57 33 .91 

Kissing period 10 .16 ∞ 13 .27 30 .78 ∞ 

 

 

 

 

 

Fig. 19. Time evolution of the average vertical velocity of the two particles, normal- 

ized by the absolute value of terminal velocity of an isolated particle, for all cases 

studied. 
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two particles, see Fig. 14 c). Interestingly, the average settling speed

for the two cases without tumbling, oblate particle pairs and case

3 − 90 ◦, increases by 49% and 22% respectively. 

4.2.1. Oblate particles pairs 

We first recall that, unlike spherical particles, settling spheroids

can resist horizontal motions by changing the orientation so that

their broad-side becomes perpendicular to the velocity direction.
hey can also be re-oriented by an external torque thus drifting

orizontally to balance the horizontal component of the drag force.

ig. 20 shows the DK(T, no tumbling in this case) process for oblate

articles with aspect ratio AR = 1 / 3 . The corresponding horizontal

elocity and inclination, �, defined in the yz plane due to the sym-

etry of the problem and the initial offset in the y -direction, are

iven as a function of non-dimensional time t ∗ in Fig. 21 a) and b). 

The trailing particle, P 2 , initially located above and on the right

and side of P 1 , experiences a torque originating from the drag dif-

erence on its right and left side, which results in a small positive

 -inclination. With this orientation, P 2 gains horizontal velocity V y 

owards P 1 . This motion forces the leading particle to drift in the

ame direction, to which the particle resists by tilting in the di-

ection opposite to that of P 2 , negative � in Fig. 21 b ( t ∗ ≈ 10). As

 consequence, P 2 moves from the right to the left side of P 1 ; at

his point ( t ∗ ≈ 25), the particles experience the same oscillation
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Fig. 20. Time sequence of the DKT process for oblate particle pairs with AR = 1 / 3 

and Ga = 80 at non-dimensional times t ∗ = 0 , 18, 25, 36 and 54. � denotes the 

angle with respect to the horizontal direction. 
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ut in the opposite direction and with higher lateral velocity and

nclination due to the reduced distance between the two. 

The drafting phase, indicated by the light green background in

ig. 21 , ends as P 2 finally reaches P 1 ( t ∗ ≈ 30) and the particles

all in contact until they hit the bottom wall. The particles, once

n contact, move with a vertical velocity larger than that of an iso-

ated one ( ≈ 1.5 times), while experiencing two opposite torques

hat keep them attached and with a positive and nearly constant

nclination. 

.2.2. Prolate particle pairs 

Prolate particles show different behaviours in the three studied

ases; at Ga = 80 and for AR = 3 they are in the unstable (grey)

egime (see Fig. 13 ) where their motion and wake structure are
ensitive to the interactions with other particles or ambient noise.

he sequence of the DKT is displayed in Fig. 22 for the three cases

hat we discuss separately. 

ase 3 − 0 ◦. In this case the particles are initially parallel, Fig. 22 a,

he DKT is analogous to the case of spherical particles, just

ith a slightly longer duration of the drafting phase and an in-

rease in the duration of the kissing phase of about 30%. The

articles start their rotation around the vertical ( z ) axis in the

umbling phase, with helical vortices appearing in their wake.

hese are triggered by the particle interactions at Ga less than

00, the critical value for an isolated particle with low noise

evels. 

ase 3 − 45 ◦. In this case, P 2 starts rotating already in the draft-

ng phase, thereby reducing the angle between the major axes of

he two particles. This is due to the torque that P 2 experiences in

he low pressure regions behind the poles of P 1 . Fig. 23 a reports

he relative angle φrel between the major axes of the particles in

he horizontal xy plane: the relative angle reduces to 12 ° at the

nd of drafting phase. The motion of P 2 into the wake of P 1 trig-

ers the particle rotation earlier than in case 3 − 0 ◦. The coupled

otation continues in the kissing phase, with a duration approxi-

ately twice that of two spheres ( Fig. 18 ); this prevents P 2 from

vertaking P 1 in the falling direction. The particles undergo a com-

lex rotating motion, with a periodic horizontal inclination, indi-

ated in Fig. 23 b. This continues also in the tumbling phase, al-

hough with smaller values of the inclination angle, �. The par-

icle wake is characterised by helical vortices as those shown in

ig. 14 for an isolated prolate. It should be noted here that the

ase 3 − 45 ◦ can be taken as a model of the results pertaining

arger initial vertical distances between the particles, when the ro-

ating motion might have already begun in the drafting phase and

he DKT becomes substantially independent of the initial particle

rientation. 

ase 3 − 90 ◦. The DK(T, no tumbling in this case) is similar to the

ase of oblate particles as P 2 experiences an inclination � with re-

pect to the horizontal plane which reduces the initial horizontal

ffset in the drafting phase, see Fig. 22 c. Fig. 24 displays the parti-

le horizontal velocity and inclination in time. P 1 does not experi-

nce any tilting due to the symmetry in the x -direction. Thus, P 2 is

ttracted in the wake of P 1 at a lower velocity than in the case of

blate particles. The kissing phase continues until the particles hit

he bottom wall, as for AR = 1 / 3 but without particle oscillation

r rotation. The vertical velocity increases by approximately 22%

n the kissing phase, and, contrary to our expectations, the parti-

le rotation is delayed until they are about to hit the bottom wall.

his observation can be explained by considering the formation of

 new body, consisting of the two particles in a cross, which is

ore stable than an individual prolate particle. 

.3. The extent of collision domain for two sedimenting spheroids 

The horizontal distance between the centres of the particle

airs, d H 
12 

/D eq , is depicted in Fig. 25 for the cases introduced pre-

iously. It can be observed that for the oblate particles, AR =
 / 3 , and the cases denoted as 3 − 0 ◦ and 3 − 90 ◦, when the ro-

ation of the particles does not start in the drafting phase, the

nitial horizontal offset is reduced to zero already at this stage,

ollowed by either tumbling or a tandem motion. For case 3 −
5 ◦, instead, when the rotation is already present during the

rafting, the initial horizontal offset does not reduce to zero be-

ore the final tumbling, yet it reduces more than for spherical

articles. 
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Fig. 21. a) The horizontal velocity V y , normalized by the absolute value of terminal velocity of an isolated case and b) the horizontal ( y ) inclination angle of the oblate 

particle pairs with AR = 1 / 3 . The drafting and kissing phase is shown by the light green and the pink background, respectively. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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The results in Fig. 25 show that in the case of non-spherical

bodies, the trailing particle P 2 is attracted in the wake of the lead-

ing particle P 1 ; the possibility to change its orientation gives P 2 an

extra horizontal velocity. In turn, P 1 also changes its orientation as

P 2 approaches. 

Motivated by these observations, we speculate that the colli-

sion kernels may be significantly larger in the case of settling sus-

pensions of non-spherical particles. An attempt is therefore made

to find the initial position from which two sedimenting spheroids

with the same Galileo number and aspect ratios would eventually

collide. To reduce the parameter space to be investigated by ex-

ploiting the symmetry of the problem we shall mainly focus on

spherical and oblate particles. Indeed, in their stable configuration,

these fall axisymmetrically, meaning that we can define on each

horizontal plane above the leading particle P 1 a circle with cen-

tre in P 1 and radius equal to the maximum distance to the centre

of the trailing particle P 2 such that the two particles will collide.

The collision between prolate particles, conversely, depends also on

the initial relative orientation; however for sufficiently long verti-

cal distances and sufficiently large Ga , the particles rotate along the

vertical axis, creating an approximate symmetry in the horizontal

direction. 

The extent of the collision area is computed by considering dif-

ferent vertical distances d V 
12 

between the surfaces of the particles

and computing the maximum horizontal distance between the par-

ticle centers for the collision to occur, R C max . Fig. 26 indicates the

vertical distance d V 
12 

, the longer semi-axis of the spheroid R L and

the collision radius R C whose maximum defines the collision area

for each vertical distance. For prolate particle pairs the collision

area is found for an initial relative angle between the major axis of

45 ° and a vertical distance d V 
12 

= 2 R L such that they start rotating

in the drafting phase. This is to make the outcome less dependent

on the initial orientation. 

The results are shown in Fig. 27 : each point in the figure is ob-

tained with a series of simulations aiming to identify the occur-

rence of a collision for each initial vertical distance. The collision

domain is a diverging cone: the larger the initial vertical distance,

the larger the horizontal distance over which the trailing particle

can be attracted. Most importantly, we see that the collision area

is considerably larger (up to four times more) for oblate particles

than for spherical ones. The maximum distance for collision, R C max ,

is less than 1.5 R L for two spheres, meaning that a collision only

happens if the particles overlap when projected on the horizontal

plane ( d H 
12 

< 2 R L ); R C max increases to approximately 5 R L for oblate

particles when the vertical distance between the two particles is

 

 R L . The data point for prolate particles reveals that R C max is larger

han for spheres and lower than for oblate particles. 

. Final remarks 

A numerical codes is developed, based on the Immersed Bound-

ry Method, to simulate suspensions of spheroidal particles. The

ubrication, collision and friction models used are presented here.

hese short-range interactions approximate the objects by two

pheres with same mass and radius corresponding to the local sur-

ace curvature at the points of contact. We use asymptotic analyt-

cal expression for the normal lubrication force between unequal

pheres and a soft-sphere collision model with Coulomb friction.

he code is used to investigate the effect of particle shape on the

edimentation of isolated and particle pairs in a viscous fluid. The

ey observations can be summarised as follows: 

• When examining the settling of an isolated particle at the same

density ratio ( ρp /ρ f = 1 . 14 ), we find that the critical Galileo

number Ga cr (based on the equivalent sphere dimeter D eq ) for

the onset of secondary motions decreases as the spheroid as-

pect ratio AR departs from 1. In particular, the critical Ga de-

creases more for prolate particles for the same ratio between

major and minor axis. 
• For Ga > Ga cr and ρp /ρ f = 1 . 14 , oblate particles perform the

so called zigzagging motion ( Mougin and Magnaudet, 2006 ),

which can be vertical, oblique or chaotic based on the parti-

cle Galileo number, whereas prolate particles rotate around the

vertical (parallel to gravity) axis with a constant angular veloc-

ity. 
• Different wake regimes are found for prolate particles with

AR = 3 and ρp / ρ f ∈ [1.14, 5.7] (see Fig. 13 and 14 ) as we in-

crease Ga . (i) steady axisymmetric wake ( Ga < 70). (ii) a ro-

tating particle with four thread-like quasi-axial vortices in the

wake (70 < Ga < 100). (iii) Helical vortices in the wake, associ-

ated with a reduction of the vertical velocity ( Ga > 100). Note

that this last bifurcation is found to be sensitive to the level of

ambient noise and the value of 100 is obtained with no noise

and only 1 particle in the computational domain. Interestingly,

and unlike the case of oblate particles, this behavior is found to

be independent of the particle density ratio in the range [1.14,

5.7]. 
• We also examine the Drafting-Kissing-Tumbling (DKT) of non-

spherical particle pairs at Ga = 80 and ρp /ρ f = 1 . 14 , starting

with their stable orientation, i.e. the major axis orthogonal to

gravity. We find that the tumbling phase disappears in the case
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Fig. 22. Sequences of a DKT process for prolate particle pairs with AR = 3 in the three cases a) 3 − 0 ◦, b) 3 − 45 ◦ and c) 3 − 90 ◦ at non-dimesional times t ∗ = 0 , 20, 30, 45 

and 76. 
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of two oblate particles and when the prolates approach each

other with their major axes almost orthogonal to each other

( Figs. 16, 20 and 22 ). 
• In general, for non-spherical bodies, the trailing particle is more

promptly attracted (in terms of reducing horizontal distance

between the centres) to the wake of the leading particle. 
• We determine the volume behind the leading particle inside

which the center of trailing particle should be for a collision to

occur. This collision domain is found to be considerably larger

for oblate particles than for spherical particles. We also con-

sider two prolates at sufficiently long vertical distance so that

they rotate in the drafting phase and the results can be seen as

a

less dependent on the initial orientation. The distance at which

collisions occur is found to be larger than for spherical particles

and lower than oblate. 

The results of this study show that sedimenting spheroids are

ttracted towards each other from longer distances and stay in

ouch for considerably longer time after they collide than spheres.

hese two observations suggest that clustering in a suspension of

edimenting spheroids may be significantly larger than for spheri-

al particles. The next step would therefore be to examine collision

ernels and clustering of non-spherical particles in quiescent and

urbulent environments and how the pair interactions studied here

ffect the global suspension behaviour. 



32 M.N. Ardekani et al. / International Journal of Multiphase Flow 87 (2016) 16–34 

Fig. 23. Time history of a) The relative angle φrel between the major axes of the prolate particles in the horizontal plane ( xy ) and b) the horizontal inclination angle of 

the prolate particle pair for the case 3 − 45 ◦ . The drafting and kissing phase is shown by the light green and the pink background, respectively. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 24. a) Horizontal velocity, V y normalized by the absolute value of terminal velocity of an isolated particle, and b) the horizontal ( y ) inclination angle of the prolate 

particle pair for the case 3 − 90 ◦ . The drafting and kissing phase are shown by the light green and the pink background, respectively. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 25. Horizontal distance d H 12 /D eq between the centres of the particle pairs versus 

time for all cases under investigation. 

 

 

 

Fig. 26. Schematic of initial conditions and parameters measuring the extent of col- 

lision. 
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ppendix A. A simple model to predict Re t for spheroidal 

articles 

Here we propose a simple model to predict the terminal

eynolds number Re t for spheroidal particles at low Galileo num-

ers. This model assumes that for oblates, spheres and prolate par-

icles the steady flow (wake) regime is similar. In this model the

e -dependent model of Abraham (1970) for perfect sphere is em-

loyed to calculate the drag coefficient C . The assumption is that
d 

http://dx.doi.org/10.13039/501100000781
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Fig. 27. Maximum radius of the collision circle R C max in the horizontal plane at dif- 

ferent vertical distances d V 12 between the surfaces of the two particles. The results 

are normalized here by the major semi-axis of the spheroids R L . 

f  

i  

c  

w  

a

C

 

n  

p

O  

C

 

w  

w  

p  

o

π

S  

a

R  

P  

s  

D

π

U  

t

R

R

A  

A  

B  

 

B  

B  

 

 

 

B  

 

B  

C  

C  

 

C  

C  

 

E  

E  

F  

 

F  

 

F  

F  

G  

G  

 

 

J  

 

J  

J  

J  

J  

 

K  

 

K  

 

 

L  

 

L  

L  

 

L  

 

L  

L  

 

L  
or sufficiently small Galileo number, the main effect of a change

n spheroid aspect ratio (with respect to a perfect sphere) is the

hange in the frontal surface area, while C d remains the same

hen defining the terminal Reynolds number based on the equiv-

lent sphere diameter: 

 d = 

( √ 

24 

Re t 
+ 0 . 5407 

) 2 

. (A.1) 

The relation between the terminal Reynolds number Re t , Galileo

umber Ga and the aspect ratio AR is given below for oblate and

rolate spheroids. 

blate spheroids. A simple force balance, using the drag coefficient

 d results in following equations for an oblate spheroid: 

1 

2 

C d πb 2 ρ f u 

2 
t = 

1 

6 

(ρp − ρ f ) πD 

3 
eq g, (A.2)

here πb 2 is the projected surface area in direction of gravity

hen the particle falls with its stable orientation (major-axis per-

endicular to the gravity direction), which can be written in term

f D eq as 

b 2 = 

1 

4 

πD 

2 
eq AR 

−2 / 3 . (A.3) 

ubstituting Eq. (A.3) in ( A.2 ) results in a relation between Re t , Ga

nd AR : 

e 2 t + 18 . 12 Re 1 . 5 t + 82 . 09 Re t − 4 . 56 Ga 2 AR 

2 / 3 = 0 . (A.4)

rolate spheroids. The same force balance holds for prolate

pheroids when the frontal surface area πab , written in terms of

 eq as 

ab = 

1 

4 

πD 

2 
eq AR 

1 / 3 . (A.5) 

pon substitution of Eq. (A.5) in the force balance, the final rela-

ion between Re t , Ga and AR reads 

2 1 . 5 2 −1 / 3 
e t + 18 . 12 Re t + 82 . 09 Re t − 4 . 56 Ga AR = 0 . (A.6) 
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