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We present a multi-block finite-difference solver for massively parallel Direct Numerical Simulations 
(DNS) of incompressible flows. The algorithm combines the versatility of a multi-block solver with the 
method of eigenfunctions expansions, to speedup the solution of the pressure Poisson equation. This is 
achieved by employing FFT-based transforms along one homogeneous direction, which effectively reduce 
the problem complexity at a low cost. These FFT-based expansions are implemented in a framework 
that unifies all valid combinations of boundary conditions for this type of method. Subsequently, a 
geometric multigrid solver is employed to solve the reduced Poisson equation in a multi-block geometry. 
Particular care was taken here, to guarantee the parallel performance of the multigrid solver when 
solving the reduced linear systems equations. We have validated the overall numerical algorithm and 
assessed its performance in a massively parallel setting. The results show that 2- to 8-fold reductions 
in computational cost may be easily achieved when exploiting FFT-accelerated for the solution of the 
Poisson equation. The solver, SNaC, has been made freely available and open-source under the terms of 
an MIT license.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Incompressible fluid flows abound in the nature and industry. 
From the nanoliter scales of the flow through capillary blood ves-
sels, to the atmosphere dynamics at the planetary scale, there 
is a kaleidoscope of important phenomena with fluid dynamics 
in the leading role. Moreover, most fluid flows beyond the cen-
timeter scale are in the turbulent state, exhibiting complex three-
dimensional, chaotic dynamics that span a vast spectrum of scales. 
Indeed, this complexity has challenged generations of physicists 
and engineers to bridge the gap between our limited understand-
ing of turbulent flows, and their prevalent nature. One of the main 
challenges stems from the nature of the Navier-Stokes equations 
governing fluid flows, which are unsteady, non-local, and highly 
non-linear, making its analysis extremely difficult.

Fortunately, the continuous developments of efficient numeri-
cal methods, together with the ever-increasing computing power 
[1], enabled a paradigm-changing tool in fluid dynamics research: 
the Direct Numerical Simulations (DNS) of the Navier-Stokes equa-
tions. A DNS resolves all the scales of a fluid flow, providing a 
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unique three-dimensional and time-resolved insight into their dy-
namics. Tremendous developments have followed the first DNS of 
homogeneous isotropic turbulence by Orszag and Patterson Jr [2]
in 1972, being now possible to simulate canonical flows with tril-
lions of spatial degrees of freedom [3,4].

Finite-difference methods have been widely used in DNS of 
incompressible turbulent flows, particularly second-order, explicit 
finite-difference methods, following the seminal works of Kim and 
Moin [5], Verzicco and Orlandi [6]. Being typically very efficient, 
these methods can reproduce important observables of canonical 
turbulent flows with high fidelity [7,8], while remaining versatile 
in terms of the types of geometries, computational grids, boundary 
conditions, and the incorporation of more complex phenomena. 
In fact, several works have shown that high-quality data obtained 
from second-order, explicit finite-difference methods are not nec-
essarily of inferior quality compared to that obtained from very 
high-order calculations (see, e.g., [8]), as long as proper (higher) 
resolution is secured. Indeed, combined with immersed bound-
ary methods to simulate the flow over complex geometries [9–11], 
interface-tracking/-capturing methods for multi-fluid flows [12,13], 
or to simulate canonical flows at very high Reynolds numbers [4], 
this class of finite-difference methods has been playing a major 
role in DNS.

The incompressible Navier-Stokes equations have a highly non-
local nature, due to the need to couple a constraint of zero veloc-
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ity divergence – mass conservation – to the momentum transport 
equation. This typically involves a solution of a Poisson equation 
for a pressure field, which is used to project the velocity field into 
a divergence-free space [14]. The Poisson equation encapsulates 
the main challenge of solving the incompressible Navier-Stokes 
equations in a massively parallel framework – any disturbance in 
the system is propagated instantly and everywhere by the pres-
sure. Indeed, the Poisson solver is typically the most expensive and 
elaborate part of an incompressible DNS solver.

Geometric multigrid methods have been proving to be effi-
cient in solving the second-order finite-difference Poisson equation 
[15,16]. These methods exhibit excellent scaling properties, allow 
for non-uniform grids, and are versatile in the boundary condi-
tions that can be accommodated. In relatively simple domains, 
however, very efficient direct solvers can be used instead, e.g. by 
exploiting the method of eigenfunctions expansions [17,18]. This 
method uses Fourier-based expansions which reduce the number 
of diagonals of the linear system in two domain directions, result-
ing in a simple tridiagonal system that can be efficiently solved 
with Gauss elimination [19]. Thanks to the continuous improve-
ments of frameworks for the development of parallel algorithms, 
this approach has regained popularity and has been employed in 
numerous recent studies [20]. Indeed, this method has allowed 
for breakthroughs in e.g. DNS of single-phase canonical turbulent 
flows [21,4], in complex geometries by using immersed bound-
ary methods [10], and in multi-phase flows [22–24], with at least 
two open-source DNS codes, AFiD [25] and CaNS [20], leveraging 
this approach. Despite most works in the literature only exploiting 
the method of eigenfunctions expansions along periodic directions 
[26], these Fourier-based expansions may be actually employed for 
many different combinations of boundary conditions [18].

To our best knowledge, finite-difference numerical algorithms 
reported in the literature using FFT-based finite-difference solvers 
are restricted to very simple geometries such as a rectangular 
box [27,20] or cylindrical/spherical domains [25,28], which may 
be extended to handle more complex geometries using immersed 
boundary methods [29]. Despite their proven fidelity to treat 
complex geometries efficiently, single-box solvers with immersed 
boundary methods may not be optimal for cases where a sub-
stantial portion of the computational domain is masked by the 
immersed solid volume (e.g., a narrow T-junction type of geom-
etry), due to a large number of superfluous calculations outside 
the physical domain. This type of geometries may be better suited 
for a solver that can be partitioned into multiple boxes, or blocks, 
to solve the Navier-Stokes equations only in the relevant physical 
domain.

The present work aims precisely to relax the restriction of cur-
rent high-fidelity finite-difference DNS solvers, while retaining the 
versatility and efficiency of FFT-based synthesis of the Poisson 
equation. To this goal, we present an efficient multi-block Navier-
Stokes solver for massively parallel simulations of fluid flows. The 
solver may leverage the method of eigenfunctions expansions to 
solve the Poisson equation along one homogeneous “extruded” di-
rection, decoupling the systems of equations in that direction, and 
employs highly efficient geometric multigrid solvers [30] for the 
reduced systems of equations. Similarly to the DNS code CaNS, the 
FFT-based expansion is implemented so as to cover all valid combi-
nations of boundary conditions. The resulting tool, SNaC, has been 
made freely available and open-source.

We present the design and implementation of the algorithm 
in a massively parallel framework, with adaptations to leverage 
the hypre library of multigrid solvers to solve the reduced Pois-
son equation after FFT-based synthesis. The results illustrate the 
high efficiency and versatility of this approach in different systems, 
resulting in up to an 8-fold speedup of the numerical calcula-
tion. Hence, in the same spirit as efficient single-block codes such 
2

as CaNS and AFiD, SNaC serves as a good base multi-block DNS 
solver, on top of which extensions to handle more complex physics 
such as two-phase flows or irregular geometries can also be imple-
mented.

Next, in §2, we will describe the governing equations and nu-
merical method. Then §3 presents our general implementation 
strategy, and the approach to enable simulations in a massively 
parallel setting. We will then present in §4 the validation of the 
numerical algorithm, and assess its performance. Finally, §5 pro-
vides a summary and future perspectives.

2. Governing equations and numerical method

The numerical algorithm solves the incompressible Navier-
Stokes equations for a fluid with unit density ρ = 1 and kinematic 
viscosity ν ,

∇ · u = 0, (1)

∂u

∂t
+ ∇ · (u ⊗ u) = −∇ P + ν∇2u, (2)

with u and P being the fluid velocity vector and pressure.
These equations are discretized using a second-order finite-

difference/finite-volume method on a structured Cartesian grid, 
with staggered flow variables [31] to avoid odd-even decoupling 
phenomena and preserve energy at the discrete level (in the invis-
cid limit) [32]. The grid spacing may vary along any direction that 
does not exploit an FFT-based synthesis of the Poisson equation 
(described later in this section). The equations are integrated in 
time using a low-storage three-step Runge-Kutta scheme (RK3) in 
a standard fractional-step method [14,5,33]. The time advancement 
an is fully explicit, and reads at each substep k (k = 1, 2, 3; k = 1
corresponds to a time level n and k = 3 to n + 1):

u∗ = uk + �t
(
αk

(
Auk + νLuk

)
+ βk

(
Auk−1 + νLuk−1

)
− γkGpk−1/2

)
, (3)

L	 = Du∗

γk�t
, (4)

uk = u∗ − γk�tG	, (5)

Pk+1/2 = Pk−1/2 + 	, (6)

where A, L, G, and D denote the discrete advection, Laplacian, 
gradient, and divergence operators; u∗ is the prediction velocity 
and 	 the correction pressure. The RK3 coefficients are given by 
α = {8/15,5/12,3/4}, β = {0,−17/60,−5/12}, and γ = α + β . 
A sufficient criterion for a stable temporal integration is given in 
[15]:

�t ≤ min

(
1.65�
2

min

ν
,

√
3�
min

max ||u||1

)
, (7)

with ||u||1 the 
1-norm of u, and �
min the smallest grid spac-
ing. Optionally, the temporal integration of the diffusion term may 
be treated implicitly. To achieve that, we directly solve three addi-
tional Helmholtz equations using the same numerical method that 
is used for the Poisson equation, even though a more efficient al-
ternating diagonal implicit (ADI) approach could also be employed 
[34,5].

2.1. Poisson solver

One essential feature of the present method concerns the so-
lution of the Poisson equation for the correction pressure 	. The 
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Table 1
Eigenvalues, and forward (F ) and backward (F −1, multiplied by the normalization factor θ ) 
transforms, to solve Eq. (9) for different combinations of staggered boundary conditions [18]. 
The eigenvalues in Eq. (9) are given by λq = 2 (cos(κq�
) − 1), q = 0, . . . , n − 1, with n being 
the (even) number of grid points in the direction of synthesis, κq a wavenumber, and �
 = 
/n
the corresponding grid spacing for a domain with length 
. The mathematical expressions for 
the different transforms can be found in, e.g., [20]. Here (I)DFT denotes the (inverse) discrete 
Fourier transform, and DST/DCT the different standard types of discrete sine/cosine transforms.

Boundary Conditions κq/(2π/
) [λq = 2(cos(κq�
) − 1)] F θ F −1 θ

Periodic q DFT IDFT n
Neumann–Neumann q/2 DCT-II DCT-III 2n
Dirichlet–Dirichlet (q + 1)/2 DST-II DST-III 2n
Neumann–Dirichlet (2q + 1)/4 DCT-IV DCT-IV 2n
equation at grid point i, j, k reads, assuming constant grid spacing 
in each direction for simplicity,

(	i−1, j,k − 2	i, j,k + 	i+1, j,k)/�x2
1+

(	i, j−1,k − 2	i, j,k + 	i, j+1,k)/�x2
2+

(	i, j,k−1 − 2	i, j,k + 	i, j,k+1)/�x2
3 = f i, j,k, (8)

which corresponds to a linear system represented by a Poisson ma-
trix with 7 non-zero diagonals; �xl denotes the grid spacing in di-
rection xl (l = 1, 2, or 3). Here we exploit the method of eigenfunc-
tions expansions to reduce the complexity of the Poisson equation 
by decoupling it along one direction, say x2. To achieve this Fourier 
synthesis [18], a Fourier-based discrete expansion operator, Fxl , is 
employed to Eq. (8), resulting in the following Helmholtz equation

−
(

2

�x2
1

+ 2

�x2
3

− λ j

�x2
2

)
	̂i, j,k + 	̂i−1, j,k + 	̂i+1, j,k

�x2
1

+ 	̂i, j,k−1 + 	̂i, j,k+1

�x2
3

= f̂ i, j,k, (9)

where �̂ = Fxl (�), denotes the Fourier-based discrete transform 
along direction xl , and λq is the eigenvalue associated with the 
wavenumber κq (q = 0, . . . , nl − 1 with nl the number of grid 
points along xl). The eigenfunction expansion Fxl and eigenval-
ues λq depend on the boundary conditions at each end of the 
expansion direction, which have to be satisfied by the correspond-
ing inverse operator F −1

xl
. For instance, Fxl would be the discrete 

Fourier transform in case of periodic boundary conditions, or a 
discrete sine transform in case of Dirichlet boundary conditions 
at both ends. Indeed, various eigenfunction expansions and eigen-
values for different combinations of boundary conditions may be 
employed. The types of direct and inverse discrete transforms Fxl

and corresponding eigenvalues λq for different combinations of 
pressure boundary conditions are listed in Table 1, and we refer 
to e.g. [18,35,20] for more details.

The advantage of the Fourier synthesis of Eq. (8) is that all 
discrete transforms presented in Table 1 may exploit the FFT algo-
rithm, resulting in a relatively low cost of O (N log n2) operations, 
with N the total number of grid points, and n2 the number of grid 
points along x2. Note, however, that the grid is required to be uni-
form in the direction of synthesis.

In simple rectangular boxes, it is beneficial to further simplify 
this equation by employing this Fourier synthesis in a second di-
rection, say in x3. With a total cost of O (N log n2n3) operations 
[20], the two reductions enable an efficient, direct solution of the 
Poisson equation – the problem is simplified to the solution of 
n2n3 tridiagonal systems with n1 unknowns (O (n1n2n3) = O (N)

operations). This was the approach used in the DNS solver CaNS
[20], and showed excellent performance. In a multi-block domain, 
instead, the geometry is expected to be more complex, with the 
number of grid points n1 and n2 varying among blocks. This makes 
3

a two-dimensional FFT-based synthesis impractical to implement 
in a distributed-memory framework. Even so, employing this syn-
thesis in one direction to obtain Eq. (9) is often possible and desir-
able – there are numerous interesting cases where a multi-block, 
two-dimensional configuration that is “extruded” along a third di-
rection, such as a T-junction, a cross-slot, a square elbow type 
of geometry. These are precisely the type of geometries, homoge-
neous along one direction, which can benefit from the FFT-based 
acceleration of the Poisson equation in the present method.

It is interesting to note that the computational complexity of 
efficient iterative methods such as a geometric multigrid solver 
for Eq. (8) scales with O (N), while a direct solution with Fourier 
synthesis in two directions scales less efficiently, O (N log n2n3). 
Interestingly, so far, FFT-based direct solvers of a Poisson equa-
tion, with N ∼ 109 − 1010 have been reported to yield excellent 
performance 3 − 10 times faster than well-established a geomet-
ric multigrid solvers (depending on the type of solver and desired 
tolerance; see, e.g., [36]). While this trend is expected to reverse 
for sufficiently high values of N , the term log n2n3 grows slowly, 
meaning current ambitious problem sizes may still be orders-of-
magnitude too small for efficient iterative methods to overperform 
direct FFT-based solvers.

In the absence of Fourier synthesis, Eq. (8) is solved using 
the efficient parallel semicoarsening multigrid solver PFMG (which 
uses a point-wise smoother), or the more robust SMG solver 
(which uses a plane smoother) [30], available in the hypre library. 
The PFMG solver estimates the best direction of semicoarsening 
by choosing the smallest grid spacing direction (or attempts to 
coarsen along x1, then x2, and then x3 for equal values of smallest 
grid spacing along the different directions). Weighted Jacobi (used 
in the present work), or red/black Gauss-Seidel may be used for 
the smoother. On the other hand, the SMG solver coarsens along 
x3, and smooths along x1 − x2 planes. This planar smoothing uses 
a single 2D SMG cycle, which in turn coarsens along x2, and uses 
x1-line smoothing. See, e.g., [37,38] for more details.

When Fourier synthesis is employed, the same solvers are used 
to solve the resulting decoupled two-dimensional Helmholtz equa-
tions. It is important to note that the magnitude of the diagonal 
elements of the matrix corresponding to each two-dimensional 
system, Eq. (9), will vary according to λ j (recall Table 1). Hence, 
the iterative solution convergence is expected to vary among the 
two-dimensional systems [16], requiring a larger number of itera-
tions for smaller values of λ j .

For clarity, the steps undertaken to solve the Poisson equation 
in this case are described below, in Algorithm 1, for a square box 
with dimensions n1 × n2 × n3 and Fourier synthesis along x2.

Important implementation details for solving these equations in 
a massively parallel paradigm will follow next.

3. Implementation strategy

The numerical tool has been implemented in modern For-
tran, and extended with MPI/OpenMP for distributed- and shared-
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Table 2
Block-specific parameters for the two-dimensional configuration in Fig. 1. lo and hi are the index space coordinates of the lower and 
uppermost corners of each block; lmin and lmax the physical coordinates of these corners; gr. type denotes the choice of grid 
mapping functions, which have to be congruent among blocks (among the family of functions implemented in SNaC, we illustrate here 
hyperbolic tangent clustering at two ends (0), or just at the lower/upper end -1/+1); gr. factor is the grid stretching parameter 
of the mapping function, with 0.0 corresponding to a uniform mapping (see [39]); dims dictates the MPI partitioning along each 
direction.

block ID lo hi lmin lmax gr. type gr. factor dims

1 [ 1, 1, 1] [20,10,2] [0.,0.,0.] [2.,1.,0.1] [ 0, 0, 0] [2.5,1.,0.] [4,2,1]
2 [21, 1, 1] [30,10,2] [2.,0.,0.] [3.,1.,0.1] [-1,-1, 0] [1.5,1.,0.] [2,2,1]
3 [31, 1, 1] [40,10,2] [3.,0.,0.] [4.,1.,0.1] [ 1, 1, 0] [1.5,1.,0.] [1,2,1]
4 [21,11, 1] [30,20,2] [2.,1.,0.] [3.,2.,0.1] [ 0, 0, 0] [2.5,1.,0.] [2,1,1]
Algorithm 1 Summary of the steps required for solving Eq. (8) in 
a n1 × n2 × n3 box, using Fourier synthesis along x2.

do i = 1 to n1 and k = 1 to n3 � n1n3 · O (n2 logn2) operations
forward FFT-based transform along x2 of right-hand-side of Eq. (8): f̂ i,1...n2,k =
Fx2 ( f i,1...n2,k)

end do
do j = 1 to n2 � n2 · O (n1n3) operations.

solve Eq. (9) using a geometric multigrid solver to obtain 	̂1...n1, j,1...n3

end do
do i = 1 to n1 and k = 1 to n3 � n1n3 · O (n2 logn2) operations

backward FFT-based transform along x2 of the previous solution: 	i,1...n2,k =
F −1

x2
(	̂i,1...n2,k)

end do

memory parallelization. The OpenMP extension serves to guide 
future porting efforts to heterogeneous (e.g., many-GPU) systems, 
which may exploit directive-based approaches for thread-level par-
allelism; its performance will not be discussed here.

3.1. Computational setup

The problem is set by two kinds of computational parameters 
– global and block-specific. Global parameters are those common to 
all blocks, such as physical properties and reference scales, time 
step control, simulation stopping criteria and I/O frequency; block-
specific parameters set, for each block, the geometry and com-
putational mesh, the boundary conditions (including inter-block 
connectivity), and the three-dimensional block domain partitioning 
into different computational subdomains, each assigned to an MPI 
process. These parameters have to be set such that the grid along 
the boundaries of connected blocks is congruent, so the whole 
computational domain is discretized on a structured grid. More-
over, the partitioning into different computational subdomains is 
conditioned to the following rules:

– blocks can be decomposed in the three domain directions, and 
each MPI process is assigned exclusively to one of the corre-
sponding computational subdomains. Consequently, each block 
needs to be assigned to at least one MPI process;

– each side of a computational subdomain is either a physical 
boundary, or is connected to a single neighboring subdomain;

– if FFT-based synthesis of the Poisson equation is used, the 
computational subdomains cannot be decomposed along the 
direction of synthesis (i.e., a pencil-like domain decomposition 
is required).

Fig. 1 presents an example of a valid computational setup in two 
dimensions, where the geometry is partitioned into 4 blocks and 
a total of 16 computational subdomains. As the figure illustrates, 
MPI ranks are grouped consecutively within each block, with row-
major ordering. Those partitions are set by a block-specific input 
parameter dictating the number of subdivisions in each direction. 
The partitioning is then performed so as to distribute as evenly 
as possible the block grid cells among the different subdomains, 
along each direction. More specifically, for nl points partitioned 
4

Fig. 1. Illustration of a valid multi-block setup in two dimensions. The red solid 
lines denote physical boundaries, while the dashed lines denote internal boundaries. 
The four blocks (depicted in different colors) are partitioned into several computa-
tional subdomains (depicted by the different numbers). The non-uniform grid was 
obtained using hyperbolic tangent based mapping functions; see [39]. The computa-
tional parameters used to generate this grid are reported in Table 2, and described 
in its caption. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

into ml MPI tasks along direction xl , the first nl%ml tasks will man-
age 	nl/ml
 + 1 grid points, and the remaining tasks will manage 
	nl/ml
 points.

In practice, the blocks are defined as illustrated in Table 2 (cor-
responding to the setup in Fig. 1). First, the coordinates of the 
lower and uppermost corners of each block (lo and hi) are de-
fined in index space, i.e., in a coordinate system with arbitrary ori-
gin and uniform spacing equal to 1, such that the number of grid 
points in each direction is equal to hi-lo+1. Then the physical 
coordinates of each of the corners are defined by parameters lmin
and lmax, and a mapping function of choice is used to determine 
the coordinates of the grid points in the physical coordinate system 
(e.g., to achieve a grid clustering bias). In Table 2, gr. type de-
fines the mapping function type, and gr. factor is a parameter 
dictating the degree of clustering. Finally, dims sets the number 
of partitions of the block, in each direction. The caption of Table 2
explains in more detail how those parameters result in the config-
uration of Fig. 1. We should note that a two-dimensional system is 
naturally obtained from a three-dimensional setup using two grid 
cells and a small domain length along one direction, with a two-
dimensional initial condition.

Finally, physical and block-block boundary conditions need also 
to be specified. Three kinds of boundary conditions may be set 
for the velocity and pressure – Dirichlet, Neumann, or block-block 
connectivity, with periodic boundary conditions being naturally set 
by a cyclic sequence of connectivity conditions along one direction. 
Naturally, the velocity and pressure boundary conditions need to 
be consistent, so that the pressure projection step at the boundary 
yields the expected normal velocity component (e.g., a prescribed 
velocity requires a zero normal gradient of 	).

3.2. Overview of the parallel implementation strategy

The following steps are performed to set up the calculation in 
a distributed-memory framework:
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1. Assign MPI tasks to the computational subdomains: for each 
block, subsets of the total number of MPI processes (hereafter 
denoted comm_world) are assigned to each computational 
subdomain, and the corresponding local grid spacing and ex-
tents are determined as illustrated in the previous section;

2. Determine neighboring MPI tasks: for each computational 
subdomain, the task IDs of the six neighboring subdomains 
(i.e., 2 per domain direction) are determined and stored (with 
MPI_PROC_NULL tagging a non-cyclic physical boundary);

3. Describe data structures for boundary data exchange: data 
structures for ghost cells communication among neighboring 
tasks are created (MPI_Type_vector describing the bound-
ary data layout), as well as a communicator comm_block 
grouping the tasks per block, to be used for post-processing 
and I/O.

Once these initialization steps are performed and the neighbors of 
each MPI process determined, the algorithm becomes agnostic of the 
disposition of blocks – communication of ghost cell data between 
neighboring computational subdomains (so-called halo exchange) 
may be performed with, e.g., a MPI_Sendrecv call, without dis-
cerning internal and external block boundaries.

Finally, MPI-I/O is used to write field data into a single binary 
file per block, which is accompanied by a file logging the saved 
data information. This allows visualizing field data as a time se-
ries using a simple XDMF metadata file [40]. For all cases assessed 
here, the MPI-I/O implementation performed well, with a time for 
checkpointing comparable to that of one calculation time step.

3.3. Massively parallel Poisson solver

The different solution strategies for solving Eq. (8) on a multi-
block geometry are described below.1 A common denominator 
in these approaches is the efficient and well-established hypre
library of high-performance multigrid solvers. Indeed, the li-
brary’s Structured-Grid-System (Struct) conceptual interface for 
structured-grid applications enabled a versatile implementation, 
however with excellent performance. It should be noted that the 
implementation in SNaC allows for flexibility in the choice of the 
direction of FFT-based synthesis (or no synthesis at all) by employ-
ing (cpp) source pre-processing.

3.3.1. Geometric multigrid solver without FFT-based synthesis
Solving Eq. (8) without FFT-based synthesis is a canonical use 

case of the hypre’s Struct interface. In a nutshell, the interface de-
fines a distributed coefficient matrix by passing to the library:

1. the MPI communicator where the calculation is to be per-
formed (here, comm_world);

2. the extent of each computational subdomain in index space 
(same convention as parameters lo and hi in Table 2);

3. information about the finite-difference stencil associated with 
the system;

4. the 7 non-zero elements of the coefficient matrix (one per 
stencil entry), for each grid point within the computational 
subdomain.

Subsequently, the setup of the right-hand side and initial guess 
vectors, and the setup of the geometric multigrid solver are 
straightforward. These initialization steps are performed once at 

1 The implementation is actually more general, solving a Helmholtz equation on 
non-uniform structured Cartesian grids, with staggered or non-staggered boundary 
conditions.
5

Fig. 2. Illustration of the domain decompositions to solve the FFT-accelerated Pois-
son equation, assuming x2 as the FFT synthesis direction. Different colors distin-
guish the tasks in different blocks, while different lightness marks the MPI tasks 
within a block. After performing the FFT-based synthesis, to solve the resulting 
n2 independent 2D linear systems, the pencils are partitioned by a factor p (here 
p = 4), and a 3D system decoupled along x2 is defined for each chunk.

the beginning of the calculation2; the Poisson equation is then 
solved every RK3 substep using the latest solution as the initial 
guess.

3.3.2. FFT-accelerated solution of the Poisson equation
The FFT-accelerated solution of the Poisson equation described 

in Algorithm 1 can be employed as long as the domain has one 
homogeneous “extruded” direction with constant grid spacing. We 
adopted the implementation of FFT-based synthesis in CaNS [20], 
which uses the guru interface of the FFTW library [41]. This ap-
proach computes all types of fast discrete transforms in Table 1
efficiently, in place, and with the same syntax, just by evoking the 
right transform type and considering the different scaling factors.

As illustrated in Algorithm 1, the first step is performing one-
dimensional FFT-based transforms along the homogeneous direc-
tion, here taken as x2. To achieve this in a distributed memory 
paradigm, the domain is not decomposed along x2, as illustrated 
in Fig. 2. In this pencil decomposition, each computational subdo-
main m has a size 

[
nm

1 ,n2,nm
3

]
.

After employing the one-dimensional FFT-based transforms, n2
decoupled 2D systems will be solved using the geometric multi-
grid method (recall Eq. (9)), with each system set analogously to 
the 3D system described above in §3.3.1. Three approaches were 
considered:

– The naive approach. Using the pencil decomposition, these 2D 
linear systems can be solved consecutively, parallelized over 
comm_world, i.e., solving for 	̂1...nm

1 , j,1...nm
3

, from j = 1 to n2. 
However, as we will see, solving such small linear systems in 
a massively parallel setting will result in a significant commu-
nication overhead, with all tasks synchronizing between each 
solve. Moreover, it is not yet possible to set explicitly a batch 
of systems to be solved collectively using the hypre library.

– The sliced pencils approach. To circumvent this issue, we de-
fine batches of 2D systems as small 3D problems – 3D linear 
systems are set as previously described, but decoupled along 
x2 by setting the stencil coefficients in this direction to zero. 
Care should be taken here, because the number of iterations 
to solve each 2D system varies along x2, due to the eigen-
value λ j in the diagonal of each system (recall Eq. (9) and 

2 If implicit temporal discretization of the diffusion term is used, not discussed 
here, the coefficient matrix diagonal needs to be modified at every RK3 substep, 
which is possible using hypre’s HYPRE_StructMatrixAddToBoxValues.
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Table 1). If, for instance, a single distributed 3D matrix encap-
sulating the entire pencil subdomain with size 

[
nm

1 ,n2,nm
3

]
is 

considered, much unnecessary work will be performed in the 
3D problem, to match the maximum number of iterations of 
the slowest-converging 2D system. Hence, to cover the prob-
lem inhomogeneity along x2, the pencil subdomains are sliced 
into p chunks, hence with a size 

[
nm

1 ,np
2 ,nm

3

]
with np

2 = n2/p; 
see Fig. 2. The value of p is chosen so as to capture this in-
homogeneity, while retaining a balance between computation 
and communication. This sliced pencils approach for the dis-
tributed FFT-accelerated Poisson equation is summarized in 
Algorithm 2.

Algorithm 2 Sequence of operations performed per task m for the 
parallel solution of the Poisson equation (Eq. (8)) with FFT-based 
synthesis, using “sliced pencils”; see Fig. 2.

do i = 1 to nm
1 and k = 1 to nm

3

forward FFT-based transform along x2 of right-hand-side of Eq. (8): f̂ i,1...n2,k =
Fx2 ( f i,1...n2,k)

end do
do J = 1 to p � p, 3D problems decoupled along x2

solve Eq. (9) in pencil chunk J within comm_world using a geometric multi-
grid solver, to obtain 	̂1...nm

1 ,( J−1)np
2 +1... Jnp

2 ,1...nm
3

end do
do i = 1 to nm

1 and k = 1 to nm
3

backward FFT-based transform along x2 of the solution: 	i,1...n2,k =
F −1

x2
(	̂i,1...n2,k)

end do

– The slab-decomposed approach. Finally, we devised an alter-
native approach to solve the decoupled 2D systems at the 
cost of one all-to-all collective operation. The approach follows 
the computation of the FFT-based transforms by a pencil–slab 
data redistribution, allowing to solve the 2D systems explicitly, 
with balanced loads. For the sake of conciseness, this approach 
is described in Appendix A.

4. Validation and computational performance

4.1. Validation

Before presenting the validations of the numerical algorithm, 
we should note that verifying the implementation of the Poisson 
solver and pressure projection steps is simple, as the final velocity 
has to be divergence-free (up to the tolerance conditioned by the 
iterative error). This incompressibility condition is checked recur-
rently during the calculation.

Besides the different solution approach for the Poisson equa-
tion, the numerical method is equivalent to that of CaNS, which has 
been validated against several canonical turbulent flows (e.g. chan-
nel, square duct, and decaying Taylor-Green vortex) [20]. Hence, 
for simple rectangular boxes, all the validations shown in [20]
for turbulent flows are easily reproduced by the present tool. We 
therefore restrict ourselves to computationally cheaper test cases 
in multi-block geometries. Unless otherwise stated, the simulations 
are integrated in time with a varying time step, dt = CFL dtmax , 
with dtmax the maximum allowed time step, and CFL = 0.95; the 
PFMG solver was seen to be efficient and robust enough for all 
cases, with tolerance and maximum number of iterations set to 
10−4 and 50. Hereafter, u, v , and w will denote the x, y, and 
z components (x1, x2, and x3 above) of the velocity. Finally, we 
should note that, for the same “assembled” computational setup, 
the numerical results should be independent of the block and MPI 
partitioning, to machine precision.
6

Fig. 3. Normal velocity profiles along the centerlines u(0, y, 0) and v(x, 0, 0) for a 
lid-driven cubic cavity at Re = 1000. The symbols correspond to the data extracted 
from [42].

4.1.1. Three-dimensional lid-driven cavity flow
We consider a three-dimensional lid-driven cavity flow, sim-

ulated in a cubic domain with dimensions [−H/2, H/2]3. Zero 
velocity boundary conditions are prescribed at all the boundaries, 
except for the top wall, which moves with a velocity u(x, H/2, z) =
(U L, 0, 0); the Reynolds number is Re = U L H/ν = 1000, and the 
flow is solved on a uniform grid with spacing �
 = H/128.

Fig. 3 shows the velocity profiles of the steady-state solution 
at the centerlines u(0, y, 0) and v(x, 0, 0), compared to the data 
extracted from [42], showing good agreement. It should be noted 
that the same setup was validated in [20], and the present results 
match that data with a maximum relative difference of 10−7. We 
have also confirmed that partitioning the geometry into smaller 
individual blocks (e.g. six, two per domain direction) results in the 
exact same calculation.

4.1.2. Laminar flow through a T-junction
We simulated the laminar T-junction flow shown in Fig. 4, with 

a constant channel height H , and composed of a short inlet branch, 
and two longer outlet branches, a geometry which requires at least 
four distinct blocks (cf. Fig. 1). A fully developed Poiseuille profile 
is prescribed at the inlet, corresponding to a flow rate per unit 
depth Q̇ . At the outlet, the same profiles are prescribed, but for 
an exiting flow rate of χ Q̇ in the branching (vertical) channel, and 
(1 − χ)Q̇ in the main (horizontal) channel, with χ = 0.44; no-
slip and no-penetration boundary conditions are prescribed at the 
walls. The flow is governed by a Reynolds number Re = Q̇ /ν =
248, and is solved on a regular grid with constant spacing, �
 =
H/64. The steady-state solution is depicted in Fig. 4, showing the 
velocity magnitude.

This computational setup was studied numerically for New-
tonian and non-Newtonian fluids in Ref. [43], to reproduce the 
experiments in Ref. [44]. The shape and extent of the two recir-
culation regions at the entrance of each branch agree with what is 
reported in these references. More quantitatively, Fig. 5 shows the 
profiles of streamwise velocity in the main branch and derivative 
branches, at different cross-sections, compared to the reference 
data extracted from [43]. The agreement is excellent.

4.2. Computational performance

We now assess the performance of the numerical algorithm in 
massively parallel calculations, with the different approaches for 
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Fig. 4. Schematic of the configuration for the T-junction simulation, with the con-
tours of the steady-state velocity magnitude. A fully-developed Poiseuille profiles 
are prescribed with a flow rate Q̇ (inlet), (1 − χ)Q̇ (main branch outlet), and χ Q̇
(derivative branch outlet). Note that the height of the channel was increased for 
clarity.

solving the Poisson equation. For convenience, we will use the fol-
lowing notation for the different approaches:

– 3D MG: iterative solution of a single 3D system without FFT 
acceleration (§3.3.1);

– 2D MG w/ FFT: iterative solution of 2D systems in a pencil de-
composition, after FFT synthesis (i.e., the maximum partition 
of case 3D MG w/ FFT, but using 2D matrices) – the naive ap-
proach in §3.3.2;

– 3D MG w/ FFT: iterative solution of p, 3D systems over par-
titioned pencils, decoupled along the FFT direction, after FFT 
synthesis (Algorithm 2) – the sliced pencils approach in §3.3.2;

– 2D MG w/ FFT (P↔S): iterative solution of 2D systems in a slab 
decomposition, after FFT synthesis and a pencil–slab data re-
distribution (Algorithm 3) – the slab-decomposed approach in 
§3.3.2.

Three different setups are considered, with geometries defined 
by an increasing number of blocks: a lid-driven cavity flow (1
block), an L-shaped duct (3 blocks), the flow around a square ob-
stacle (8 blocks). The lid-driven cavity flow corresponds to the 
problem described in §4.1; the other two cases are illustrated in 
Fig. 6, where the block partitioning can be also appreciated, and 
the computational parameters are described in the figure caption. 
Note that the L-channel is an example of a system possibly better 
suited for a multi-block solver than a single-block DNS solver ex-
tended with an immersed boundary method. Conversely, the flow 
around a square setup is more suited for leveraging such a single-
block approach (see [45]), because it can be represented by a rect-
angular box with only a small portion of the domain – the square 
obstacle – excluded.

The timing measurements reported here correspond to the 
wall-clock time required to perform a full solution time step (i.e., 
three RK3 substeps), averaged over 100 instances. As we will 
see, the majority of this time is spent solving the Poisson equa-
tion, roughly 85% − 95%, depending on the approach. The runs 
were performed on the supercomputer Tetralith based in Sweden 
(Xeon Gold 6130 16C 2.1GHz, Intel Omni-Path), with SNaC built 
using the Intel programming environment (18.0.1) with -O3 -
fp-model fast -xHost as optimization flags. For all the cases 
here, a pencil partitioning p = 16 (recall Algorithm 2) will be used, 
as it was found to result in a good scaling performance. A more de-
tailed analysis of the influence of this parameter in the algorithm 
performance is presented in Appendix B.

Fig. 7(a) shows the strong scaling performance of the single-
block case (lid-driven cavity) for two different grids (with N =
7

5123 and 10243), with different directions of FFT synthesis. The 
differences in performance for the different pencil orientations 
are small, with x-aligned pencils performing slightly better for 
the 3D MG case, possibly due to a more favorable data distribu-
tion; note that, since the grid is constant, the PFMG solver should 
coarsen along x in this problem. Interestingly, when FFT synthesis 
is used, the timings are much less sensitive to the pencil orien-
tation. As expected from the excellent performance of the hypre
library, the geometric multigrid solver without FFT acceleration 
scales very well, as it can be also depicted in the compensated plot 
in panel (b) of Fig. 7. Note that, there, the slight offset between 
cases with 5123 and 10243 is due to a slightly larger number of 
iterations required for the iterative solver on the finer grid.

Somewhat expectedly, the FFT-accelerated approaches perform 
well for a small number of cores, showing a remarkable 2-fold 
speedup compared to the standard 3D multigrid solution. However, 
when increasing the number of cores, the importance of solving 
several 2D systems in parallel becomes evident. While the scaling 
quickly degrades when the 2D linear systems are solved naively in 
the pencil decomposition (2D MG w/ FFT), it remains excellent with 
the other two approaches: when the slab-decomposed solution is 
used (2D MG w/ FFT (P↔S); Algorithm 3) the figure shows a consis-
tent 2-fold speedup, until the maximum partitioning is reached; 
using the sliced pencils approach (Algorithm 2; 3D MG w/ FFT) 
shows similar performance, but allows to reach a higher number 
of cores, until the load per task becomes too small and the scaling 
deteriorates. This occurs for a number of cores NC P U beyond 1024
for the 5123 setup, and beyond 2048 for the 10243 case. Neverthe-
less, the wall-clock time per step in the scaling region is already 
quite small.

These figures are expected to scale to larger, more ambitious, 
problem sizes. To illustrate this, we also investigated the weak 
scaling performance of the same problem, and performed a strong 
scaling analysis on a different machine at more extreme scales – 
up to 65 536 cores for a domain with 40963 grid points. For the 
sake of conciseness, these results are discussed in Appendix C.

To breakdown the different contributions of the calculation 
timeline to the total wall-clock time, we profiled the application3

for two computational grids assessed in Fig. 7: a 5123 box decom-
posed among 64 CPUs, and a 10243 box decomposed among 1024
CPUs; note that N/NC P U varies by a factor of two between the 
cases. Unfortunately, the profiling overhead resulted in a perfor-
mance degradation which was disproportionately larger for cases 
3D MG w/ FFT and 2D MG w/ FFT, especially for many-core runs with 
a small number of points per task. Hence, we restricted the anal-
ysis to setups with a substantial amount of grid points per task. 
Moreover, the naive approach (2D MG w/ FFT) metrics were severely 
exacerbated by the profiling at all scales analyzed, and the results 
are therefore not shown.

In addition to the performance metrics we present below, the 
profiler also measured the memory footprint of the different ap-
proaches (note that double precision is used). The cases 3D MG
and 3D MG w/ FFT used roughly 480 bytes per grid point, slightly 
more than the other two approaches which solve explicitly 2D sys-
tems, 2D MG w/ FFT (P↔S) and 2D MG w/ FFT, which used about 350
bytes per grid point.

These results are plotted in Fig. 8, where the bars show the cal-
culation wall-clock time tw , normalized by that of the 3D MG case, 
tMG

w . Expectedly, the relative communication footprint increases 
with increasing decomposition, and is larger for the cases which 
exploit FFT acceleration, as they are computationally cheaper. Also 
not surprisingly, the computation footprint of calculating the pre-
diction velocity u∗ is the same among cases, and ditto for the 

3 Using the Arm MAP profiler 21.0.2.



P. Costa Computer Physics Communications 271 (2022) 108194

Fig. 5. Profiles of streamwise velocity in the main branch (left) (x component, u), and derivative branch (right) (y component, v) of a T-junction, compared to the reference 
data in [43]. U0 = Q̇ /H is the inlet bulk velocity.

Fig. 6. Multi-block computational setups considered in the scaling performance assessment, with the domain dimensions and the blocks depicted in different translucent 
colors. (a): flow in a L-shaped rectangular duct with height H , solved on a constant grid with H/�
 = 256. No-slip boundary conditions are prescribed everywhere, except 
at the inflow (bottom, with uniform velocity U ), and at the outflow (zero pressure); the Reynolds number is Re = U H/ν = 500. The planar contours show the steady-state 
velocity magnitude (red – high; blue – low). (b): turbulent flow around a square cylinder with size H solved on a constant grid with H/�
 = 64. The flow is periodic along 
the z direction, and a uniform velocity U is prescribed at the inflow, with zero pressure boundary conditions prescribed elsewhere for simplicity; the Reynolds number is 
Re = 500. The figure shows the regions of the domain with vorticity |ω| > 5Ub/H , colored by the local spanwise vorticity ωz in a divergent linear colormap (blue to red) 
clamped at ωz = ±3. For the performance tests, the size of the top, bottom, and right blocks was divided by 3, to allow assessing scaling over a range of O (10) − O (1000)

cores.
FFT-based transforms, for the cases which exploit them. Interest-
ingly, virtually all the communication is associated with the solu-
tion of the Poisson equation, meaning that the overhead associated 
with the halo exchanges is quite small. The solution of the Poisson 
equation takes no less than roughly 90% of the calculation time, 
but is much smaller for the cases with FFT synthesis. Of course, 
the breakdown of the different contributions to the Poisson solver 
footprint is also quite different. As expected, performing the FFT-
based acceleration of the Poisson equation results in a significant 
speedup of up to a factor two for this case, with a quite small 
overhead to compute the FFT-based transforms (here, cosine trans-
forms), taking no more than 2% of the total time. Note also that 
the communication operations performed within hypre are sup-
pressed for case 2D MG w/ FFT (P↔S), and replaced by those of 
the pencil–slab data redistribution. This is expected: for a single-
8

block calculation, the pencil–slab data redistribution will serialize 
the 2D multigrid solves, because each slab contains a batch of 
undivided 2D problems. Conversely, in a multi-block setup, the 
2D multigrid solves following the pencil–slab data redistribution 
will still require inter-block communication, as Fig. A.1 illustrates. 
We should finally note that, when profiling, the timings for case 
2D MG w/ FFT (P↔S) appear to be much smaller than that of 
3D MG w/ FFT, contrary to what Fig. 7 shows. The reason is that 
the timings for case 3D MG w/ FFT were more penalized by the 
profiler.

Fig. 9 shows the strong scaling performance of the other two 
cases considered, with a z-aligned pencil decomposition, and two 
different values of nz while keeping the number of points in the 
other directions fixed; the domain length along z was also in-
creased to keep the grid spacing constant. The blocks were decom-
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Fig. 7. (a): strong scaling of the numerical algorithm up to 4096 cores, for a lid-driven cavity flow with 5123 and 10243 grid cells, with different directions of FFT-based 
synthesis (x-, y-, or z-oriented subdomains by increasing color lightness). tw denotes wall-clock time in seconds/time step/task (i.e., three Runge-Kutta substeps), and NC P U

the number of cores. (b): compensated scaling plot showing the total CPU time per grid cell, per time step, with N being the total number of grid cells. Here a horizontal 
line corresponds to ideal scaling. Legend notation – see the beginning of §4.2.

Fig. 8. Breakdown of the different shares of the calculation timeline to the total compute time per time step, for a single-block calculation (lid-driven cavity case) and 
increasing domain decomposition. The bars show the wall-clock time per step, tw , normalized by that of the 3D MG case, tMG

w , for the three different approaches denoted 
in the horizontal axis, and two domain decompositions: N/NC P U = 5123/64 and 10243/1024. Blue shaded areas denote computation operations as described in the legend, 
while orange ones denote communication. In the legend, u∗ denotes all operations required for the calculation of the prediction velocity. The gray area denotes the remainder 
of the share of calculation time (communication and computation). The numbers on top of each bar correspond to the communication share of the total calculation time.
posed among MPI tasks with a constant number of grid points per 
computational subdomain, to ensure load balancing. The only ex-
ception is the right-most block in the L-channel (Fig. 6), which was 
less decomposed (a factor 1.5 more grid points per task than the 
other blocks), so that we could still test Algorithm 3 in O (1000)

tasks without adding more spanwise grid points. Moreover, this 
allows assessing the performance of a setup with a small load im-
balance.

Remarkably, FFT-based acceleration results in a tremendous 
speedup for the L-channel case, with an almost 8-fold speedup 
compared to the standard iterative solution. Here, for the smaller 
value of nz = 256, the sliced pencils approach in Algorithm 2 per-
forms best. Conversely, with larger values of nz the overhead of the 
all-to-all collective in the slab-decomposed approach (Algorithm 3) 
becomes less significant, and the two approaches show very sim-
ilar performance. Despite these differences, both approaches show 
a remarkable speedup, allowing for very small values of wall-clock 
time per step. We should note that, despite the large speedup 
in the L-channel case, the best wall-clock time is still larger (by 
roughly a factor of 2) than the single-box solver CaNS in a box 
that fits the L-channel. As a rough estimate, we expect savings in 
wall-clock time when the multi-block calculation requires about 
3.5 fewer grid cells than the corresponding single-box envelope. 
Of course, the fast single-box solver cannot exploit non-uniform 
grids along more than one direction, and the imposition of bound-
ary conditions at immersed boundaries is not exact.
9

Conversely, for the flow around the square case, the perfor-
mance of the FFT-accelerated solver is less impressive, because the 
value of nz relative to the problem size is smaller. Nevertheless, 
for larger nz , up to about 5-fold speedup can be observed. Here 
the communication overhead of the slab decomposed solver is too 
large, resulting in relatively poor performance. Still, despite the 
reasonable performance here for a smaller number of cores, we 
recall that this case may be more suited for a simpler, single-box 
solver extended with an immersed boundary method.

To highlight the performance of the different approaches in a 
multi-block setting, Fig. 10 presents the profiling results for the 
flow around the square case.4 Clearly, the sliced pencils approach 
is superior in terms of wall-clock time and communication over-
head. Of course, due to the large speedup, its relative communi-
cation footprint seizes a larger share of the total calculation time 
compared to case 3D MG, about 20%. Finally, the slab-decomposed 
(2D MG w/ FFT (P↔S)) case shows a huge communication overhead. 
While these metrics are possibly aggravated by the profiling itself, 
the difference in performance compared to the single-block profil-
ing in Fig. 8 are expected: in a single block, the pencil–slab data re-
distribution serializes the subsequent iterative solutions, meaning 

4 Unfortunately, we were unable to obtain reliable the profiling results for the L-
channel case, since the metrics were substantially penalized by the profiler, possibly 
due to the prescribed load imbalance in this setup.
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Fig. 9. Strong scaling of the numerical algorithm for the L-channel case (a), and flow around a square case (b), plotting the same quantities as Fig. 7(a). The different 
approaches are considered, using z as the direction of FFT synthesis, for two different values of the number of grid points nz . Legend notation – see the beginning of §4.2.

Fig. 10. Breakdown of the different shares of the calculation timeline to the total compute time per time step, for a multi-block calculation (flow around the square case, 
with nz = 576), on NC P U = 69 cores. The communication footprint in the 2D MG w/ FFT (P↔S) case has been slightly penalized by the profiling. See the legend of Fig. 8 for 
more details.
that there should be no communication within the hypre library; 
in a multi-block setting, inter-block communications are required 
(see Fig. A.1), and the footprint of the communication within hypre
is also significant. Finally, it is worth noting that the computation 
footprint is the smallest for the 2D MG w/ FFT (P↔S) case. This is 
expected because this approach perfectly covers the inhomogene-
ity of the iterative systems along the synthesis direction (see the 
analysis in Appendix B). However, compared to case 3D MG w/ FFT, 
the communication cost of this approach clearly outweighs the 
benefit of the optimal coverage of the problem inhomogeneity.

To get a better impression of the performance gains for these 
three different canonical systems, Fig. 11 summarizes the increase 
in wall-clock time per step of the FFT-accelerated calculation, rela-
tive to the standard iterative solution. Clearly, the method performs 
best when the number of points in the direction of FFT synthesis is 
larger, which ensures a substantial load per task. Nonetheless, the 
results demonstrate the potential of this approach to speedup a 
multi-block DNS by large factors, and with small enough wall-clock 
time per time step. On balance, the best-performing approach is 
clearly the “sliced pencils” one (Algorithm 2; 3D MG w/ FFT).

5. Summary and outlook

We have presented and validated a fast and versatile multi-
block finite-difference solver for the incompressible Navier-Stokes 
equations. If the physical problem features one homogeneous di-
rection, which is the case in numerous setups of interest, the 
numerical algorithm can exploit the method of eigenfunctions to 
decouple the finite-difference Poisson equation along that direc-
tion. This “synthesis” of the Poisson equation can be employed at 
10
a very low cost using FFT-based transforms, and enables major 
gains in the performance of the overall numerical algorithm. We 
have implemented the different FFT-based expansions in a unified 
framework, to support all the valid combinations of boundary con-
ditions of the method.

Following the FFT-based synthesis, a series of two-dimensional 
Poisson problems are solved using an efficient geometric multi-
grid solver. Here we leveraged the well-established hypre library, 
which enables a flexible multi-block implementation, however 
with excellent performance. We have demonstrated that the most 
straightforward application of the library to this problem is bound 
to show poor parallel performance, and proposed two distinct 
strategies to improve the parallel scalability of the overall method. 
Both strategies were shown to greatly improve the parallel perfor-
mance of the algorithm, allowing for 2- to 8-fold speedups of the 
calculation, corresponding to a small wall-clock time per time step. 
However, one of these stood out, by exploring an optimal trade-
off between capturing the inhomogeneity of the 2D problems in 
the FFT direction, and maintaining a significant compute load per 
task. This approach was shown to perform well for all configura-
tions, and in a truly massively parallel setting, scaling at least up 
to 65 536 cores.

The numerical algorithm was implemented in a new DNS code, 
SNaC, which was made freely available and open-source. Given the 
flexibility and great performance of the tool, SNaC is expected to 
follow the footsteps of other research DNS codes such as CaNS and 
AFiD, and serve well as a base multi-block Navier-Stokes solver on 
top of which approaches for more complex phenomena can be 
implemented, such as immersed boundary methods for complex 
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Fig. 11. Speedup of the FFT-accelerated calculation with respect to the standard multigrid solution (with wall-clock time per step tMG
w ), as a function of the number of cores 

NC P U , for the different cases considered, with z is taken as the FFT synthesis direction. The grey dashed line marks the threshold of performance gain tw = tMG
w , and the “×” 

markers denote simulations that were not possible to perform due to insufficient memory (for small number of cores), or not enough points to slab-decompose along z (for 
larger number of cores in case 2D MG w/ FFT (P↔S)). Legend notation – see the beginning of §4.2.
geometries [46,47], numerical methods for two-phase [48,49] or 
non-Newtonian flows [36].

In the near future, and in line with recent efforts in the fluid 
dynamics community, SNaC will be ported for massively parallel 
calculations on many Graphics Processing Units (GPUs) [50–53]. In 
addition to this major milestone, an implementation of the multi-
grid solver will be sought which directly solves a batch of small 
linear systems, so that the inhomogeneity of the reduced 2D linear 
systems is fully covered without compromising the parallel perfor-
mance.
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Appendix A. Alternative approach for solving the Poisson 
equation

Here we present an alternative approach that may be employed 
for the solution of n, 2D linear systems (Eq. (9)), using a slab do-
main decomposition. Unlike Algorithm 2, where an appropriate 
value of p needs to be determined, this approach does not re-
quire tuning. Let nb = [

nb
1,n2,nb

3

]
be the number of grid points 

in each direction specific to block b, with the same number of 
grid points in the synthesis direction (here taken again as x2, so 
nb = n2). Instead of solving the 2D linear systems sequentially in 
2
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Fig. A.1. Illustration of two different domain decompositions which may be used to solve the FFT-accelerated Poisson equation, assuming x2 as the FFT synthesis direction. 
Different colors distinguish the tasks in different blocks, while different lightness marks the MPI tasks within a block. The left side shows a pencil decomposition, required 
for the FFT-based synthesis, and the right side shows a slab decomposition within each block used for the solution of Eq. (9). The redistribution from one decomposition to 
the other requires a collective all-to-all operation, performed within the group of ranks in each block (comm_block).
a pencil domain decomposition, we follow the FFT-based synthesis 
by a redistribution of the domain decomposition within each block 
to a slab-like configuration, as illustrated in the right drawing of 
Fig. A.1.

In this configuration, each subdomain m has a size 
[
nb

1,nm
2 ,nb

3

]
, 

i.e., with the points along x2 decomposed by the total number of 
tasks within block b. This operation is employed using an all-to-
all5 collective operation within the group of tasks of each block 
(i.e., under comm_block). Solving the iterative system using this 
configuration has clear advantages: first, the communication re-
quired for each 2D system is much smaller; second, the solution of 
the different n2 systems is now parallel, in batches of size nm

2 . We 
will see that these advantages justify the overhead of the all-to-all
collective, especially if n2 is large enough. Besides the collective 
operations, a downside of this approach is the hard limit of the 
number of tasks per block, which cannot exceed n2 in this ex-
ample. However, this restriction can be significantly relaxed by 
leveraging shared-memory parallelization.

As Fig. A.1 illustrates, the slab decomposition is not required 
to be congruent among the different blocks – domains with larger 
values of nb

1 × nb
3 can be more decomposed, to ensure load bal-

ancing. This means that the communicator associated with the 
iterative solution of the nm

2 2D systems to be passed to hypre
cannot be comm_block. Instead, an array of MPI communicators 
comm_slab(:) is determined, where each element encapsulates 
the tasks in charge of the 2D linear system associated with the 
plane with index j. The overall approach for the parallel FFT-based 
solution of the Poisson equation is presented in Algorithm 3.

Appendix B. On the performance effects of the pencil slicing 
parameter p

Here we analyze the effect of the number of pencil slices, p, in 
the performance of Algorithm 2. Recall that, after performing the 
FFT-based synthesis of the Poisson problem, nl 2D independent lin-
ear systems are to be solved using an iterative (multigrid) method. 
The main diagonal of each system varies along the synthesis direc-
tion xl , according to the eigenvalue λ (recall Eq. (9)), resulting in a 
varying “diagonal dominance” of the problems along xl . Hence, for 
the same iterative error tolerance, the number of iterations will 
vary among 2D problems, being larger the less “diagonally dom-

5 In practice, implemented using MPI_Alltoallw and subarray MPI derived 
types.
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Algorithm 3 Sequence of operations performed per task for the 
parallel solution of the Poisson equation (Eq. (8)) with FFT-based 
synthesis, using a pencil↔slab data redistribution.

do i = 1 to nm
1 and k = 1 to nm

3

forward FFT-based transform along x2 of right-hand-side of Eq. (8): f̂ i,1...n2,k =
Fx2 ( f i,1...n2,k)

end do
pencil→slab redistribution within each block (i.e., within comm_block) to obtain 
f̂1...nb

1,1...nm
2 ,1...nb

3

do j = 1 to nm
2

solve Eq. (9) within comm_slab(j) using a geometric multigrid solver to ob-
tain 	̂1...nb

1, j,1...nb
3

end do
slab→pencil redistribution within each block (i.e., within comm_block) to obtain 
	̂1...nm

1 ,1...n2,1...nm
3

do i = 1 to nm
1 and k = 1 to nm

3
backward FFT-based transform along x2 of the solution: 	i,1...n2,k =
F −1

x2
(	̂i,1...n2,k)

end do

inant” the problem is. This is illustrated in Fig. B.1(a) for one of 
the cases addressed in §4 – after Fourier synthesis, the higher the 
wavenumber κ , the larger the magnitude of λ, and the lower the 
required number of iterations Niter to solve the reduced Helmholtz 
problems.

The sliced pencils approach (Algorithm 2) aims at covering this 
problem inhomogeneity, while ensuring a significant load per task. 
If p = nl , this inhomogeneity is perfectly covered by solving the 
problem plane-by-plane, but the load per task is too small, and 
communication overwhelms computation.6 Conversely, the limit of 
p = 1 – a single, large 3D problem – results in a lot of unneces-
sary work, since the number of iterations will be dictated by the 
slowest-converging 2D problem. Hence, there is an optimal value 
of p which shows good compromise in terms of load per task and 
capturing the problem inhomogeneity. Fig. B.1(b) shows the influ-
ence of this parameter in the wall-clock time per time step of one 
of the problems addressed above (see the figure caption), where 
p ≈ 16 seems to show a good compromise. A possible improve-
ment in the present method is performing an autotuning step at 
the beginning of the calculation, which optimally distributes the 
partitioning to cover inhomogeneous distribution of Niter , possibly 
unevenly.

6 We recall that this corresponds to the naive approach in §3.3.2, except that here 
a planar problem is still treated as a 3D problem decoupled along xl .
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Fig. B.1. Lid-driven cavity flow setup with N = 10243 points, solved with FFT-based synthesis along x. (a): evolution of the number of iterations in the PFMG solver, Niter , 
required to solve each 2D problem after FFT-based synthesis, for a fixed iterative error tolerance of 10−4 (blue), and the corresponding eigenvalue λ associated with the 
cosine series expansion along the x direction (red), both as a function of the wavenumber κ (recall Table 1). (b): wall-clock time as a function of the pencil partitioning 
parameter p when solving the problem with the sliced pencils approach in Algorithm 2 with NC P U = 1024.

Fig. C.1. (a): weak scaling of the numerical algorithm up to 8192 cores and 4.3 · 109 grid points. The domain length and number of grid points were successively extended 
along the x direction, so as to maintain the grid spacing and number of grid points per task. tw denotes wall-clock time in microseconds per grid point, per time step, and 
NC P U the number of cores. Here horizontal lines correspond to ideal scaling. (b): strong scaling of the numerical algorithm up to 65 536 cores, for a lid-driven cavity setup 
with 40963 grid cells. tw denotes wall-clock time in seconds/time step/task (i.e., three Runge-Kutta substeps), and NC P U the number of cores. The inset shows, again, the 
wall-clock time per grid point, per time step in microseconds, where horizontal lines mean ideal scaling. Both cases pertain to a lid-driven cavity flow with x-oriented pencil 
subdomains. Legend notation – see the beginning of §4.2.
Appendix C. Performance assessment at extreme scales

This section studies the weak and strong scaling performance of 
the overall implementation at more extreme scales. While we re-
strict ourselves to the lid-driven cavity flow case for simplicity, we 
expect it to be representative of other multi-block configurations, 
as long as the data is evenly distributed among tasks.

Fig. C.1(a) presents the weak scaling of the same problem as 
Fig. 7, starting from a 5123 grid, with both the grid spacing and 
number of points per task fixed. Expectedly, while the scaling is 
poor for the naive 2D MG w/ FFT case, the other cases show good 
performance. This suggests that the strong scaling performance 
shown in Fig. 7 should still hold for larger problem sizes and num-
ber of CPUs.

To confirm this, we tested the strong scaling overall algorithm 
at extreme scales, on a 40963 box in up to 65 536 CPUs. The sim-
ulations were carried out on the Betzy supercomputer, based in 
Norway (Bull Sequana XH2000, AMD EPYC 7742 64C 2.25GHz, Mel-
lanox HDR Infiniband), and the results are shown in Fig. C.1(b). 
The 3D MG and the preferred FFT-accelerated case, 3D MG w/ FFT, 
are the only ones who were able to run efficiently (or at all) 
at these scales. Both cases show very good scaling performance, 
as highlighted by the figure inset. Moreover, despite the different 
hardware, the wall-clock time per grid point is within the same 
order-of-magnitude as that of the weak scaling plot, with slightly 
larger values which are expected, since the finer grid requires more 
iterations in the Poisson solver. These observations are somewhat 
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consistent with the excellent performance of the hypre library at 
extreme scales (see, e.g., [38]) which, as we have shown, holds the 
largest share of compute time within the calculation timeline.

Not surprisingly, the naive 2D MG w/ FFT implementation per-
formed poorly at these scales, with the runs either failing or cost-
ing no less than an order of magnitude more computing time than 
the case without FFT acceleration (not shown). On the other hand, 
the FFT-accelerated slab-decomposed case (2D MG w/ FFT (P↔S); 
Algorithm 3) failed to run due to the overflow of the integer dis-
placement vectors in the MPI_Alltoallw collective, which is a 
known limitation of the MPI library; see [54]. This issue also af-
fected the weak scaling plot in panel (a) of Fig. C.1. Fortunately, 
large counts are supported in the latest MPI Standard 4.0 [55], 
which will resolve this issue without major changes in the cur-
rent implementation.
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