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a b s t r a c t

We present an efficient solver for massively-parallel direct numerical simulations of
incompressible turbulent flows. The method uses a second-order, finite-volume pressure-
correction scheme, where the pressure Poisson equation is solved with the method of
eigenfunction expansions. This approach allows for very efficient FFT-based solvers in
problemswith different combinations of homogeneous pressure boundary conditions. Our
algorithmexplores all combinations of pressure boundary conditions valid for such a solver,
in a single, general framework. The method is implemented in a 2D pencil-like domain
decomposition, which enables efficient massively-parallel simulations. The implementa-
tion was validated against different canonical flows, and its computational performance
was examined. Excellent strong scaling performance up to 104 cores is demonstrated for
a domain with 109 spatial degrees of freedom, corresponding to a very small wall-clock
time/time step. The resulting tool, CaNS, has been made freely available and open-source.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Turbulent flows are ubiquitous in nature and industry, being the most common flow regime for cases which dimensions
the human eye can depict. These flows exhibit unsteady, three-dimensional, chaotic and multi-scale dynamics. The
Navier–Stokes equations governing its dynamics are highly non-linear, making analytical predictions often difficult. For-
tunately, the continuous increase in computer power, together with the progress in development of efficient numerical
techniques, resulted in a paradigm change in turbulence research. It is now possible to conduct direct numerical simulations
(DNS) which generate data for the full spectrum of scales with billions, or even trillions of spatial degrees of freedom [1].

Pseudo-spectral approaches have been the method of choice for DNS of relatively simple flows, like homogeneous
isotropic turbulence [2] or pressure-driven wall-bounded flows [3,4]. In these cases one can benefit from the spectral spatial
convergence of the solution, and explore the FFT algorithm for efficient computations. In many situations, however, lower-
order discretizations are desirable. Finite-difference methods, for instance, can reproduce several lower-order moments of
a flow observable with the same fidelity of a spectral method, and much less computational effort [5,6] (despite requiring
more resolution, and consequently higher memory bandwidth per FLOP). Moreover, these methods are in general more
versatile in terms of boundary conditions and problem complexity [7]. For instance, in finite-difference algorithms, complex
geometries can be easily and efficiently implemented through immersed-boundary methods [8,9], without facing problems
due to Gibbs phenomenon.

Indeed, many fundamental insights on the dynamics of turbulent flows have been revealed with standard second-order
finite-difference algorithms embedded in a pressure-correction scheme. Few of many examples are the turbulent channel
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flowwith rough walls [10], flow through porous media [11], interface-resolved simulations of particle-laden flows [12], and
turbulent Rayleigh–Bénard convection [13]. This class of methods allows for fast computations, and is often used e.g. when
a dense disposition of immersed boundaries reduces anyway the overall accuracy of the method to second-order.

The Poisson equation for the correction pressure is often the most demanding part of the Navier–Stokes solver. Consider
the second-order finite-difference discretization of the Laplacian operator. In many cases, iterative solvers (e.g. multigrid
methods [14]) are used to solve the resulting system. These methods exhibit excellent scaling properties and are versatile
when it comes to the type of boundary conditions that can be implemented. However, much more efficient direct solvers
can be used for several combinations of homogeneous pressure boundary conditions. The method of eigenfunction expan-
sions [15–17] is an example. This approach has been implemented in the 1980s in the well-known FISHPAK library [18] and
explores the fact that the number of diagonals in the coefficient matrix can be reduced by solving an eigenvalue problem
with Fourier-based expansions. When compared to multigrid methods, FFT-based direct solvers for the second-order finite-
difference Poisson equation can be O(10) times faster [19], and by construction satisfy the solution to machine precision.

Consider, for instance, a 3D problem with at least two periodic boundary conditions. Using the method of eigenfunction
expansions, one can apply a discrete Fourier transform (DFT) operator in two directions, and solve a resulting tridiagonal
system with Gauss elimination. The inherent challenge for an efficient parallelization is that the FFT algorithm requires
all the points in one direction. Consequently, a distributed-memory parallelization in more than one direction is not
straightforward. This difficulty has restricted the progress in scaling thesemethods to a very high number of cores (e.g. more
than O(103)).

There has been a change in trend since highly-scalable libraries for two-dimensional pencil-like domain decomposi-
tion [20] started to appear. Several recent examples of numerical implementations using this direct method, combined with
a 2D domain decomposition, achieved unprecedented performances in problem sizes with O(109) grid points. Examples
are turbulent Taylor–Couette flows [21], interface-resolved simulations of bubbly flows in homogeneous isotropic turbu-
lence [22], and interface-resolved simulations of turbulent wall-bounded suspensions [23].

Recently, van der Poel et al. [24] published a numerical algorithm1 for wall-bounded turbulence that showed very good
performance both in terms of scaling, up to 64 000 cores, and in terms of actual wall-clock time. In their work and the studies
mentioned in the previous paragraph, discrete Fourier transforms (DFT) could be applied to solve the second-order finite-
difference Poisson equation, as there were at least two periodic directions. However, other types of FFT-based expansions
can be used for several combinations of homogeneous pressure boundary conditions [7,17,25]. To the best of our knowledge,
there is no general implementation for massively-parallel DNS that features the wide range of boundary conditions that can
be covered with a second-order, FFT-based solver. This is the main motivation of the present work.

We present a numerical method for fast, massively-parallel numerical simulations of turbulent flows. The corresponding
code, CaNS (Canonical Navier–Stokes), benefits from the efficiency of FFT-based codes for the finite-difference discretization
of the pressure Poisson equation, and allows for simulating a wide range of canonical flows.

Themanuscript is organized as follows. In Section 2we describe themethod and provide somemathematical background
on the Poisson solver. Section 3 describes details on the implementation of the numerical algorithm for massively-parallel
numerical simulations of turbulent flows. Section 4 presents a validation of the code for distinct flows, and accesses its
computational performance in thousands of cores. Finally, in Section 5 we conclude and discuss future perspectives.

2. Numerical method

The numerical algorithm solves the Navier–Stokes equations for an incompressible, Newtonian fluid with unit density,
and kinematic viscosity ν,

∇ · u = 0, (1a)
∂u
∂t

+ (u · ∇)u = −∇p + ν∇
2u, (1b)

where u and p are the fluid velocity vector and pressure, respectively.
These equations are solved in a structured Cartesian grid, uniformly-spaced in two directions. Standard second-order

finite-differences are used for spatial discretization with a staggered (marker and cell) disposition of grid points. The
equations above are coupled through a pressure-correction method [26], and integrated in time with a low-storage, three-
step Runge–Kutta scheme (RK3) [27]. The advancement at each substep k is presented below in semi-discrete notation
(k = 1, 2, 3; k = 1 corresponds to a time level n and k = 3 to n + 1):

u∗
= uk

+ ∆t
(
αkADk

+ βkADk−1
− γk∇pk−1/2) , (2a)

∇
2Φ =

∇ · u∗

γk∆t
, (2b)

uk
= u∗

− γk∆t∇Φ, (2c)

pk+1/2
= pk−1/2

+ Φ, (2d)

1 Freely available in github.com/PhysicsofFluids/AFiD.

http://github.com/PhysicsofFluids/AFiD
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where AD ≡ −(u ·∇)u+ν∇
2u, u∗ is the prediction velocity andΦ the correction pressure. The RK3 coefficients are given by

αk = {8/15, 5/12, 3/4}, βk = {0, −17/60, −5/12} and γk = αk + βk. This temporal scheme has been proven to be reliable
for DNS of turbulent flows, yielding overall second-order temporal and spatial accuracy [28].

A sufficient criterion for a stable temporal integration is given in [27]:

∆t < min

(
1.65∆r2

ν
,

√
3∆r

maxijk(|u| + |v| + |w|)

)
, (3)

with ∆r = min(∆x, ∆y, ∆z) and ∆xi the grid spacing in direction xi ≡ {x, y, z}. The time step restriction due to the viscous
effects can be removed with an implicit discretization (e.g. Crank–Nicolson) of the diffusion term. This involves the solution
of three Helmholtz equations, one for each component of the prediction velocity. The associated computational overhead
can pay off in case of flows at low Reynolds number, but is unnecessary for the inertia-dominated flows of our interest.

Finally, let us note that the boundary conditions for the correction pressure and prediction/final velocity may not be
specified independently. For instance, for a prescribed velocity, the pressure boundary conditionmust be set to homogeneous
Neumann (i.e. zero gradient in the direction normal to the boundary), such that the projection step does not alter this
condition.

2.1. Poisson equation

Often the solution of the Poisson equation for the correction pressure, Eq. (2b), is the most computation-intensive part
of a Navier–Stokes solver. Even so, there are several configurations for which a fast (FFT-based), direct method can be used,
even if the unknown is non-periodic. To achieve this, one can explore themethod of eigenfunction expansions, as in [17]. This
method is applied in two domain directions, x and y, requiring therein a constant grid spacing, and homogeneous boundary
conditions. Since this part of the algorithm comprises themost elaborate parallelization steps, wewill briefly introduce some
mathematical background below.

Consider the following constant-coefficients Poisson equation discretized with second-order central differences at grid
cell i, j, k:

(Φi−1,j,k − 2Φi,j,k + Φi+1,j,k)/∆x2+

(Φi,j−1,k − 2Φi,j,k + Φi,j+1,k)/∆y2+

(Φi,j,k−1 − 2Φi,j,k + Φi,j,k+1)/∆z2 = fi,j,k; (4)

The method reduces this system of equations with 7 non-zero diagonals to a tridiagonal system, which can be solved very
efficiently with Gauss elimination. To achieve this we apply a discrete operator Fxi to Eq. (4) in two domain directions, that
reduces the problem to:

(λi/∆x2 + λj/∆y2) ˆ̂
Φ i,j,k + ( ˆ̂

Φ i,j,k−1 − 2 ˆ̂
Φ i,j,k +

ˆ̂
Φ i,j,k+1)/∆z2 =

ˆ̂f i,j,k, (5)

where ˆ̂□ ≡ Fy(Fx(□)) and, although not necessary,we consider∆z constant for simplicity.2 The eigenvaluesλ and operators
Fxi depend on the boundary conditions of the problem, which need to be satisfied by the corresponding inverse (backward)
operator, F−1 xi (e.g., for a periodic boundary condition F is the Discrete Fourier Transform (DFT)). For several non-periodic
combinations of boundary conditions,F corresponds towell-known discrete transforms (DT) that can be expressed in terms
of DFT; see [7,17]. This allows for efficient FFT algorithms with little computational overhead with respect to the periodic
case. An operator could in principle be applied a third time, in direction z. However, the tridiagonal system in Eq. (5) is solved
more efficiently with Gauss elimination: O(n) operations, contrasting with O(n log n) required by the FFT algorithm, with n
being the number of grid cells in z. Moreover, a non-uniform grid spacing in z is possible with Gauss elimination.

Tables 1 and 2 summarize the transforms pertaining to different boundary conditions. Since the pressure grid cells in
the Navier–Stokes solver are staggered, we solely present the transforms whose inverse satisfy homogeneous staggered
boundary conditions. Note, however, that non-staggered versions must be used when the temporal integration of the
diffusion term in Eq. (2a) is implicit.

Finally, the steps required for solving the Poisson, and associated number of operations are shown below (with Nxi the
number of points in direction xi):

1: compute Nz times the discrete forward transform of f in directions x and y successively, ˆ̂f = Fy(Fx(f )) →

O(Nz(NyNx logNx + NxNy logNy)) operations;
2: solve the resulting NxNy tridiagonal systems for the pressure with Gauss elimination – O(NxNyNz) operations;

3: compute Nz times the discrete backward transform of ˆ̂f in directions y and x successively, f = F−1,x(F−1,y( ˆ̂f )) →

O(Nz(NxNy logNy + NyNx logNx)) operations.

2 In the numerical tool, the grid spacing in z can be non-uniform.
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Table 1
Eigenvalues, and forward (F) and backward (F−1) transforms for different
combinations of boundary conditions. P, D and N denote, respectively, pe-
riodic, and staggered Dirichlet and Neumann boundary conditions (BC). The
eigenvalues (Eq. (5)) are given by λq = −4sin2(θq), q = 0, 1, . . . , n− 1 [17];
p = 0, 1, . . . , n/2 − 1 and n is the (even) number of grid cells in the one
direction. The mathematical expressions for F are shown in Table 2.

BC θq F F−1

P–P

⎧⎪⎨⎪⎩
(p + 1)π

n
, q = 2p + 1

θp−1 , q = 2p ̸= 0
0 , q = 0

DFT 1
n IDFT

N–N qπ
2n DCT-II 1

2n DCT-III

D–D (q+1)π
2n DST-II 1

2n DST-III

N–D (2q+1)π
4n DCT-IV 1

2n DCT-IV

Table 2
Coefficients âq , (q = 0, 1, . . . , n − 1) for a discrete transform â = F(a) of a
sequence of n real numbers a ≡ {a0, a1, . . . , an−1} [17]. n is assumed to be even
and l = 0, 1, . . . , n/2 − 1.

F âq

DFT

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑n−1

p=0
ap , q = 0∑n−1

p=0
ap cos(2πpl/n), q = 2l + 1 ̸= n − 1∑n−1

p=0
ap sin(2πpl/n), q = 2l ̸= 0∑n−1

p=0
ap(−1)p , q = n − 1

IDFT a0 +
∑n/2−2

p=0 (a2p+1 cos(2πpq/n) + a2p+2 sin(2πpq/n)) + an−1(−1)q

DCT-II 2
∑n−1

p=0ap cos(π (p + 1/2)q/n)

DCT-III a0 + 2
∑n−1

p=1ap cos(πp(q + 1/2)/n)

DST-II 2
∑n−1

p=0ap sin(π (p + 1/2)(q + 1)/n)

DST-III 2
∑n−2

p=0ap sin(π (p + 1)(q + 1/2)/n) + (−1)qan−1

DCT-IV 2
∑n−1

p=0ap cos(π (p + 1/2)(q + 1/2)/n)

3. Implementation

The numerical algorithm is implemented in FORTRAN90/95, with a Message-Passing Interface (MPI) extension for
distributed-memory parallelization, combined with a shared-memory parallelization (hybrid MPI-OpenMP). The geometry
is divided into several computational subdomains in a pencil-like decomposition (Fig. 1). Throughout most steps of the
algorithm, Nx

p × Ny
p pencils are aligned in the z direction.

The 2-cell width of the finite-difference discretization requires communication. Following common practice, we use
halo cells that store a copy of data pertaining to the boundary of an adjacent subdomain. This requires four pairwise data
exchanges (e.g. SEND_RECV) per halo update, and has negligible computational overhead.

Further communication steps are required for computing the DT: the operators are applied successively in directions x
and y, requiring all the grid cells for the direction considered. A simple solution would be to change the distribution from
2D to a 1D slab-like configuration, decomposing the domain only in z. This requires a single MPI_ALL_TO_ALL operation,
but restricts the number of slabs to Nx

pN
y
p ≤ Nz . Combining this approach with a shared-memory parallelization (e.g. hybrid

MPI-OpenMP) relaxes the restriction by a factorO(10) for the present state-of-the-art present hardware (see e.g. top500.org),
which can still be constraining for relatively large problem sizes, e.g. with Nz = O(102) and very large NxNy.

This issue can be circumvented by keeping the 2D decomposition, and transposing the data distribution such that it is
shared in the direction of interest, as in Fig. 1. This can be done at the cost of a one extra all-to-all operation per DT. To
achieve this we use the highly-scalable 2DECOMP&FFT library [20]. This library provides a simple interface to transpose the
decomposition from x to y-aligned pencils, from y to z, and the reciprocal operations y to x and z to y. The authors of the AFiD
code [24] implemented a direct transposition from x-aligned to z-aligned pencils and vice-versa, which was not present in
the original 2DECOMP&FFT library and avoids one extra all-to-all operation when transposing from x to z. We ported these
modifications to our DNS code, although in the present studywe still use the original transpose routines from 2DECOMP&FFT.

https://www.top500.org/
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Fig. 1. Illustration of a pencil-like domain decomposition, with Nx × Ny × Nz = 83 grid cells and Nx
p × Ny

p = 42 computational subdomains (color-coded).
The left-most panel corresponds to the configuration used throughout most steps of the algorithm. Transpositions of the data distribution to x-aligned
(middle) and y-aligned (right) pencils are performed in the Poisson solver to compute efficiently the discrete transforms Fxi .

Table 3
Physical and computational parameters for the validation cases. Lxi and Nxi denote the domain size and number of points in direction xi , respectively. See
the text for the scaling parameters used for the Reynolds number, Re.

Case Lx × Ly × Lz Nx × Ny × Nz Pressure BC in x,y,z Re

Lid-driven cavity 1 × 1 × 1 128 × 128 × 128 N-N, N-N, N-N 1000
Square duct 10 × 1 × 1 512 × 128 × 128 P-P, N-N, N-N 4410
Plane channel 6 × 3 × 1 512 × 256 × 144 P-P, P-P, N-N 5640
Taylor–Green vortex 2π × 2π × 2π 512 × 512 × 512 P-P, P-P, P-P 1600

The discrete transforms are computed with the FFTW3 library [29]. Apart from its inherent efficiency, the Guru interface
of the library computes all the discrete transforms presented in Table 2 with the same syntax, just bymodifying a parameter
corresponding to the transform type3 . This allowed for a single and efficient parallel implementation of the Poisson solver, as
only one data layout for the transposing routines is required. The resulting tridiagonal system of equations is solvedwith the
LAPACK library (DGTSV) [30]. In case of periodicity in z, the resulting cyclic tridiagonal system is reduced into two tridiagonal
problems; see e.g. [31].

The algorithm for solving the Poisson equation is summarized below:

1: compute the RHS of the Poisson equation in the z-aligned pencil decomposition, and transpose result to x-aligned
pencil decomposition;

2: compute NyNz forward 1D DT in x, and transpose result to y-aligned pencil decomposition;
3: compute NxNz forward 1D DT in y, and transpose result to z-aligned pencil decomposition;
4: solveNxNy linear tridiagonal systemswith Gauss elimination, and transpose result to y-aligned pencil decomposition;
5: compute NxNz backward 1D DT in y, and transpose result to x-aligned pencil decomposition;
6: compute NyNz backward 1D DT in x, and transpose result to z-aligned pencil decomposition.

Finally, parallel I/O is also handled by the 2DECOMP&FFT, which is based on MPI-I/O.

4. Validation and computational performance

4.1. Validation

Wevalidated our implementation against threewall-bounded flows,with different combinations of boundary conditions,
as shown in Table 3. Hereafter, u, v and w denote the x-, y- and z-components of the mean velocity, respectively.

4.1.1. Lid-driven cavity flow
We simulated a lid-driven cavity flow in a cubic domain with dimensions [−h/2, h/2]3. Zero-velocity no-slip and no-

penetration boundary conditions are prescribed at all the boundaries, except for the top wall, which moves with a velocity
u(x, y, h/2) = (UL, 0, 0). Other physical and computational parameters are shown in Table 3, where the Reynolds number is
defined as Re = ULh/ν.

Fig. 2 shows the velocity profiles of the steady state solution at the centerlines u(0, 0, z) and w(x, 0, 0), compared to the
data extracted from Ku et al. [32]. The results show excellent agreement with the data.

3 Note that the result of a real-to-complex DFT of n real numbers only requires storage of n real numbers, and therefore can be handled in the same way
as the other DT.
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Fig. 2. Normal velocity profiles along the centerlines u(0, 0, z) and w(x, 0, 0) for a lid-driven cubic cavity at Re = 1000. The symbols correspond to DNS
data extracted from [32].

Fig. 3. Visualizations of the simulations of the turbulent channel (top) and duct (bottom). Q-criterion shown with iso-contours of the second invariant
of the velocity-gradient tensor, Q/(Ub/(2h))2 = 5 (for the channel only the lower half is shown). The contours pertain to streamwise velocity (red—high,
blue—low). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.1.2. Pressure-driven turbulent channel and square duct flow
We now consider two turbulent wall-bounded flows: a plane channel and a square duct. Both flows are periodic in the

streamwise (x) direction, with no-slip/no-penetration boundary conditions at the wall-normal directions (y = ±h and
z = ±h in the case of the duct, and z = ±h, with periodicity in the spanwise direction y, in the channel case). A volume
force is added to the discretized momentum equation, to maintain a bulk streamwise velocity Ub = 1. The physical and
computational parameters are shown in Table 3, where Re = Ub(2h)/ν, and h is the channel/duct half-height.

Fig. 3 shows a 3D visualization for the two flow cases, illustrating what is typically seen for a turbulent flow at low
Reynolds number: three-dimensional coherent structures with a relatively small scale-separation with respect to the scales
of confinement.
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Fig. 4. Left: mean streamwise velocity profile for turbulent channel flow at friction Reynolds number Reτ = 180. Right: profiles of root-mean-square
velocity ur

i . Both figures use inner-scaling, i.e. velocity scaled with the wall friction velocity uτ , and distance with the viscous wall-unit ν/uτ . The profiles
are compared to DNS data from [3] (KMM).

Fig. 5. (a) Mean flow for a square duct. The isolines pertain to streamwise velocity, starting with 2uτ , and evenly-spaced by the same amount. The vectors
illustrate in-plane velocity, with a maximum magnitude of 0.02Ub . (b) Mean streamwise velocity along the duct diagonal, compared to the data extracted
from Gavrilakis [4].

The channel flow simulation was initialized with a streamwise vortex pair [33] which effectively triggered transition.
Statistics were collected once the mean pressure gradient required to sustain the constant flow rate reached a statistically
steady state. The data were ensemble-averaged from 1000 samples, over a period of 1400h/Ub.

We computed the friction Reynolds number from the time-averaged pressure gradient, yielding Reτ = uτh/ν = 180.2,
with uτ ≡

√
−(dpm/dx)h the wall-friction velocity. This agrees with the correlation given by Pope [34]: Reτ = 0.09Re0.88 ≈

180. Fig. 4 compares first and second-order mean flow statistics against data from the seminal paper of Kim et al. [3] at the
same friction Reynolds number. Again, the results closely match the reference DNS data.

Now for the turbulent square duct, we used an initial condition from a DNS performed in our group at similar Reynolds
number, which allows for a fast transient towards a fully-developed turbulent state. Since themean flow is two-dimensional,
statistical convergence of the results requires many samples. The data were averaged from 1000 samples, over a period of
15000h/Ub.

Like for the turbulent channel, we compute the friction Reynolds number based on the wall-friction velocity, obtaining
a value of Reτ = 149.1, consistent with the value of ≈ 150 reported by Gavrilakis [4] for a DNS with the same parameters.
Fig. 5(a) quantifies the mean flow. It is well-known that the presence of corners induces a non-zero (secondary) mean flow
in the wall-normal directions, in this case with a maximum magnitude of about 2% of the bulk velocity. This value is also
consistent with the results reported by Gavrilakis [4]. Panel (b) of Fig. 5 compares the streamwise velocity profile along the
diagonal of the duct cross-section, compared to the data extracted from [4]. The results show good agreement.
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Fig. 6. (a) Visualization of iso-surfaces of vorticity magnitude |Ω| for the Taylor–Green vortex benchmark. The left panel shows the initial condition with
|Ω| = 1.5U/L and the right panel with |Ω| = 15U/L at instant t = 9L/U . The colors correspond to the z-component of vorticity (see the legend). (b)
Temporal evolution of the mean viscous dissipation ε̄ of a three-dimensional Taylor–Green vortex, compared to the reference data from a pseudo-spectral
code in [36].

4.1.3. Taylor–Green vortex
The last validation considers the temporal evolution of a Taylor–Green vortex. The flow is solved in a tri-periodic domain

with dimensions [0, 2π ]
3, with the following initial condition for the velocity field u(x, t = 0) = (u0, v0, w0):

u0 = U sin(x/L) cos(y/L) cos(z/L), (6)
v0 = −U cos(x/L) sin(y/L) cos(z/L), (7)
w0 = 0 . (8)

with U = 1, L = 1, and a Reynolds number ReTG ≡ UL/ν = 1600. Other computational parameters are shown in Table 3.
In this case, a smooth initial velocity field will produce vorticity due to vortex-stretching, generating small-scale vortical

structures [35]. Thismechanism can be visualized in Fig. 6(a), which shows iso-contours of vorticitymagnitude for the initial
condition and the instant corresponding to the maximum value of energy dissipation.

The generation of small-scale vortical structures leads to a net increase in viscous dissipation of kinetic energy, ε =

2νS : S; with S being the strain-rate tensor S ≡ (∇u + ∇uT )/2. For larger times, this quantity will show a net decrease
and eventually vanish, since there is no external power input. Fig. 6(b) shows the expected trend, with the mean (i.e. space-
averaged) viscous dissipation reaching a maximum at t = 9L/U . The results are compared to the reference data in [36],
showing good agreement.

4.2. Computational performance

Finally, we test the scaling performance of our implementation for a tri-periodic domain. Since theDFT is cheaper than the
other DT, this case corresponds to the highest memory bandwidth per FLOP. It should be, therefore, the worst case scenario
for a scaling test.
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Fig. 7. (a) Strong scaling of the numerical method up to 16 384 cores in a domain with 10243 grid cells. tw denotes wall-clock time in seconds, and N the
number of cores. (b)Weak scaling performance for a domainwith 10243/512 ≈ 2 ·106 grid cells per core. tw denotesmeanwall-clock time in seconds/time
step/task (i.e. three Runge–Kutta substeps), and N the number of cores. tw,256 corresponds to the wall-clock time for N = 256.

The simulations were performed in partition A2 (Knights Landing) of the supercomputer MARCONI from Cineca, Italy.
Only distributed-memory parallelizationwas tested in the presentwork, and sufficed for achieving good scaling. The shared-
memory implementation may be useful for future extensions, but as implemented now does not seem to improve the
performance. The strong scaling tests were performed in a domain with 10243 grid cells. Fig. 7(a) shows the wall-clock
time versus the number of cores. Superlinear speedup can be noticed for a smaller number of cores, likely due to cache
effects. Overall, the code shows very good scaling performance up to about O(104) cores, reaching a small wall-clock time
tw ≈ 0.5 s/core/timestep. These numbers are consistentwith the good performance of the2DECOMP&FFT library [20], which
handles the most demanding parallelization steps.

Weak scaling tests are illustrated in Fig. 7(b), with the number of grid cells per task fixed to 2 · 106. The results show a
slight monotonic deterioration of up to 17% from N = 256 to 4096 cores. Overall, the results indicate that strong scaling
timings are likely to scale up to much larger problem sizes.

5. Conclusions and outlook

We presented an efficient numerical algorithm for massively-parallel DNS of canonical turbulent flows. Themethod uses
a direct, FFT-based solver for the pressure Poisson equation discretized with second-order central differences, parallelized
with a 2D pencil-like domain decomposition. This approach has been applied recently to massively-parallel numerical
simulations of complex turbulent flows with O(109) spatial degrees of freedom, but restricted to at least two periodic
directions; see e.g. [21–23]. To the best of our knowledge, this is the first general implementation of such parallel algorithms
allowing for the different combinations of homogeneous pressure boundary conditions, that can benefit from the method of
eigenfunction expansions. Our approach was shown to scale up to about 104 cores for a problemwith 109 spatial degrees of
freedom, reaching a very small wall-clock time. These figures will probably scale for larger problem sizes.

The method was validated against distinct benchmark cases of canonical laminar and turbulent flows. It should be
noted that several other configurations could have been considered. Obvious examples are wall-bounded flows with
inflow/outflow boundary conditions.

For low Reynolds number flows (or extremely high resolution), implicit temporal integration of the diffusion term can
be advantageous. In that case, non-staggered discrete transform operators can be considered for non-periodic cases, but the
velocity boundary conditions in x and y must be homogeneous. This has been implemented in our numerical tool.

This type ofNavier–Stokes solvers, combinedwith othermethodologies to handle, e.g., complex geometries ormultiphase
flows, have been unveiling important physical insights into flows that require massively-parallel DNS. In the same spirit, the
resulting open-source code, more than a tool for simulations of canonical flows, can be seen as an efficient base solver on
top of which numerical methods for more complex flows can be implemented.
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